Melbourne Institute Working Paper Series

Working Paper No. 1/17

Estimating the Real Effects of Uncertainty Shocks at the Zero Lower Bound

Giovanni Caggiano, Efrem Castelnuovo and Giovanni Pellegrino
Estimating the Real Effects of Uncertainty
Shocks at the Zero Lower Bound*

Giovanni Caggiano†, Efrem Castelnuovo‡ and Giovanni Pellegrino§
† Department of Economics, Monash University; Department of Economics and Management, University of Padova; and Bank of Finland
‡ Melbourne Institute of Applied Economic and Social Research, The University of Melbourne; Department of Economics, The University of Melbourne; and Department of Economics and Management, University of Padova
§ Melbourne Institute of Applied Economic and Social Research, The University of Melbourne; and Department of Economics, University of Verona

Melbourne Institute Working Paper No. 1/17
ISSN 1447-5863 (Online)
ISBN 978-0-73-405236-0
January 2017

* We thank Piergiorgio Alessandri, Nicholas Bloom, Ana Galvão, Pedro Gomis-Porqueras, Nicolas Groshenny, Gunes Kamber, George Kapetanios, Robert Kirkby, Leo Knipper, Eric Leeper, Diego Lubian, Roland Meeks, Antoine Parent, Bruce Preston, Ricardo Reis, Giovanni Ricco, Tatevik Sekhposyan, Timo Teräsvirta, Kostas Theodoridis, Benjamin Wong, Jacob Wong, and participants at presentations held at various conferences and seminars for their useful comments. Part of this project was developed while Castelnuovo was visiting the Reserve Bank of New Zealand and Pellegrino was visiting Queen Mary University of London and the University of Bonn. The kind hospitality of these institutions is gratefully acknowledged. Our opinions are not necessarily shared by the Bank of Finland. Financial support from the Australian Research Council via the Discovery Grant DP160102281 is gratefully acknowledged. For correspondence, email <efrem.castelnuovo@unimelb.edu.au>.

Melbourne Institute of Applied Economic and Social Research
The University of Melbourne
Victoria 3010 Australia
Telephone (03) 8344 2100
Fax (03) 8344 2111
Email melb-inst@unimelb.edu.au
WWW Address http://www.melbourneinstitute.com
Abstract

We employ a parsimonious nonlinear Interacted-VAR to examine whether the real effects of uncertainty shocks are greater when the economy is at the Zero Lower Bound. We find the contractionary effects of uncertainty shocks to be statistically larger when the ZLB is binding, with differences that are economically important. Our results are shown not to be driven by the contemporaneous occurrence of the Great Recession and high financial stress, and to be robust to different ways of modeling unconventional monetary policy. These findings lend support to recent theoretical contributions on the interaction between uncertainty shocks and the stance of monetary policy.

JEL classification: C32, E32

Keywords: Uncertainty shocks, Nonlinear Structural Vector AutoRegressions, Interacted VAR, Generalized Impulse Response Functions, Zero Lower Bound
1 Introduction

Uncertainty is widely recognized as one of the drivers of the Great Recession and the subsequent slow recovery. Recent empirical studies show that when an unexpected increase in uncertainty realizes, a contraction in real activity typically follows. Theoretically, uncertainty can depress real activity via "real option" effects, which affect investment in presence of nonconvex adjustment costs, and "precautionary savings" effects, which influence consumption if agents are risk averse. Bloom (2014) offers a survey of the recent empirical and theoretical literature.

Unsurprisingly, fluctuations in uncertainty represent a major concern for policymakers. Given its recessionary effects, an increase in uncertainty naturally calls for a cut in the policy rate. In December 2008, however, the U.S. federal funds rate hit the zero lower bound and remained there for seven years. Table 1 documents correlations between different business cycle indicators (real GDP, investment, and consumption, all expressed in quarterly growth rates) and two proxies of financial uncertainty. The first one is the VIX, which is a measure of implied volatility of stock market returns over the next 30 days commonly used in literature. The second one is the financial uncertainty index recently proposed by Ludvigson, Ma, and Ng (2016), which is constructed via a factor approach to forecast errors related to a large number of financial U.S. series. The correlations are computed for two different phases of the U.S. post-WWII economic history, i.e., "Normal times", in which the federal funds rate was unconstrained, and "Zero Lower Bound" (ZLB henceforth), in which the federal funds rate hit its lower bound and stayed at its bottom value. A clear fact arises. The negative correlation between these business cycle indicators and uncertainty doubled - in the case of the VIX, tripled - since the end of 2008. These correlations are in line with the predictions coming

\[\text{References}\]

1In an interview to The Economist released in the midst of the Great Financial Crisis on January 29, 2009, Olivier Blanchard, Economic Counsellor and Director of the Research Department of the IMF, stated: "Uncertainty is largely behind the dramatic collapse in demand. Given the uncertainty, why build a new plant, or introduce a new product now? Better to pause until the smoke clears."

2Ludvigson, Ma, and Ng (2016) find financial uncertainty to be an exogenous driver of the U.S. business cycle. This finding justifies our focus on measures of financial uncertainty. However, our Appendix shows that the stylized fact documented in Table 1 is robust to the employment of the measure of uncertainty based on the distribution of the forecast errors of real GDP proposed by Rossi and Sekhposyan (2015), the macroeconomic uncertainty index constructed by Jurado, Ludvigson, and Ng (2015), and the economic policy uncertainty index constructed by Baker, Bloom, and Davis (2016). For a similar evidence, see Plante, Richter, and Throckmorton (2016).

3Throughout the paper, we will label as "Normal times" the post-WWII period up to 2008Q3, and "ZLB" the period 2008Q4-2015Q4. This is consistent with the fact that the Federal Reserve set its target federal funds rate to the 0-25 basis points range in December 2008.
from the theoretical contributions by Johannsen (2014), Fernández-Villaverde, Guerrón-Quintana, Kuester, and Rubio-Ramírez (2015), Basu and Bundick (2015, 2016), and Nakata (2016). These papers employ calibrated New Keynesian general equilibrium models and show that uncertainty shocks generate a much larger and persistent drop in real activity when monetary policy is constrained by the ZLB.

In spite of the obvious relevance of this issue from a policy and modeling standpoint, no empirical analysis explicitly modeling the nonlinearity related to the real effects of uncertainty shocks due to the ZLB has been proposed so far. This paper addresses this issue by estimating a nonlinear Interacted-VAR (I-VAR) with post-WWII quarterly U.S. data. The I-VAR is particularly appealing to address our research question because it enables us to model the interaction between uncertainty and monetary policy in a parsimonious fashion. A parsimonious approach is desirable here given the limited amount of observations belonging to the ZLB state in the post-WWII U.S. sample. Our baseline I-VAR models measures of real activity (real GDP, consumption, investment), prices (the GDP deflator), the federal funds rate, and the VIX. The model is nonlinear because it augments an otherwise standard linear VAR with an interaction term featuring the VIX, which enables us to identify uncertainty shocks, and the federal funds rate, which identifies the two states we aim at modeling, i.e., normal times and the ZLB. Crucially, the federal funds rate and the VIX are endogenously modeled in our analysis. We account for this endogeneity by computing nonlinear Generalized Impulse Response Functions (GIRFs) as in Koop, Pesaran, and Potter (1996) and Kilian and Vigfusson (2011).

Our main results can be summarized as follows. First, in line with most empirical contributions on the real effects of uncertainty shocks, we find that heightened uncertainty induces a contraction in real activity. In particular, consumption, investment, and output display a temporary negative response to an unexpected increase in uncertainty. This holds true in both states of the economy, a finding that suggests

4Johannsen (2014), Nodari (2014), Caggiano, Castelnuovo, and Groshenny (2014), Fernández-Villaverde, Guerrón-Quintana, Kuester, and Rubio-Ramírez (2015), and Basu and Bundick (2016) engage in VAR investigations dealing with impulse responses estimated over different samples including or excluding the ZLB. As shown in Section 4, our investigation enables us to link the different impulse responses we find in the two scrutinized regimes to the ZLB, and to exclude competing explanations such as the contemporaneous occurrence of the Great Recession or heightened financial stress.

5Our analysis does not separately identify macroeconomic effects due to movements in uncertainty per se and effects due to movements in risk. Bekaert, Hoerova, and Lo Duca (2013) empirically discriminate between the two and find the business cycle effects triggered by movements in the VIX to be mainly due to variations in uncertainty.
that uncertainty should be a concern for policymakers also in times when conventional monetary policy is unconstrained. Second, and specifically related to our research question, we find clear-cut evidence in favor of stronger real effects of uncertainty shocks in presence of the ZLB. According to our empirical model, the peak negative response of investment at the ZLB to a jump in uncertainty is about 3% larger relative to the one estimated in normal times, and 37% larger in cumulative terms over a five-year span, while the cumulative relative loss in output and consumption is about 12% and 13% larger, respectively. Third, we show that the different response of real activity to an uncertainty shock in the two regimes is robust to the employment of Ludvigson et al.’s (2016) novel index of financial uncertainty. Fourth, our results are robust to the inclusion in our otherwise baseline model of a number of financial and real variables (measures of financial stress, stock prices, house prices, private and public debt) and of various proxies for unconventional monetary policy. Exercises conducted with alternative interaction terms involving indicators of the business cycle and measures of financial stress show that our empirical findings are not driven by the occurrence of the Great Recession or the increase in credit spreads during the ZLB phase. Finally, time-varying impulse responses computed by exploiting the dependence of our macroeconomic responses to historical values in our VAR reveal that periods of high interest rates are characterized by a medium-term temporary overshoot of real activity after an uncertainty shock, while periods of low interest rates such as the early 2000s and the ZLB feature no overshoot.

Our findings lend support to structural frameworks which model mechanisms that imply a larger response of real activity to uncertainty shocks in presence of the ZLB (Johannsen (2014), Fernández-Villaverde, Guerrón-Quintana, Kuester, and Rubio-Ramírez (2015), Nakata (2016), and Basu and Bundick (2016)). All these models’ predictions hinge upon the inability of the central bank to offset negative uncertainty shocks because of the ZLB, which prevents the policy rate to lower the real ex-ante interest rate to the level which would otherwise reach in absence of the ZLB. More in general, our results call for models able to generate comovements conditional to uncertainty shocks. Recent contributions in this sense are Fernández-Villaverde, Guerrón-Quintana, Kuester, and Rubio-Ramírez (2015) and Basu and Bundick (2016), who model countercyclical markups through sticky prices as a crucial element to generate comovements, and Born and Pfeifer (2015), who focus on wage markups. The aforementioned finding on the relationship between high interest rates - and, therefore, a large room to manoeuvre by the central bank - and a temporary overshoot in real activity after an uncertainty shock
suggests that a complementary mechanism could be in place. Working with a partial equilibrium model with heterogeneous firms, Bloom (2009) shows that an increase in uncertainty is followed by a reallocation of resources from low- to high- productivity units, which in turn generates a temporary overshoot in real activity. Our results show that a decrease in the policy rate could facilitate such reallocation mechanism by reducing factor prices.

Our findings are also relevant from a policy standpoint. Bloom (2009) advocates policies and reforms designed to respond to (or avoid the occurrence of) heightened uncertainty. These may range from the design of norms regulating financial markets to avoid excess volatility to the improvement of the credibility of institutions announcing future policies. Basu and Bundick (2015) propose a state-contingent policy conduct featuring a Taylor rule in "Normal times", and a forward guidance-type of policy able to stabilize the real interest rate when the ZLB binds. Evans, Fisher, Gourio, and Krane (2015) and Seneca (2016) show that uncertainty about future economic outcomes justifies a "wait-and-see" monetary policy strategy and a delayed liftoff of the policy rate. Our empirical results suggest that research on policies optimally designed to tackle the effects of uncertainty shocks, in particular in presence of the ZLB, is clearly desirable.

The paper develops as follows. Section 2 discusses the relation to the literature. Section 3 presents our nonlinear framework and the data employed in the empirical analysis. Section 4 documents our main results, various robustness checks, and the analysis of alternative channels. Section 5 concludes.

2 Relation to the literature

Our empirical analysis relates to theoretical contributions studying the real effects of uncertainty shocks and their effects in normal times and in presence of the ZLB. The paper we explicitly relate to is Basu and Bundick (2016). They estimate the effects of uncertainty shocks with a linear VAR modeling the VIX as a proxy of uncertainty and a number of business cycle indicators. They find an unexpected increase in uncertainty to generate comovements in real activity indicators. Such shock is also associated to a temporary reduction in the policy rate. They then compare the predictions of RBC and new-Keynesian models regarding consumption, investment, and output in response to an uncertainty shock to households' discount rate. First, they show that flexible prices RBC models with constant markups are ill-suited to replicate business-cycle
comovements among these variables generated by uncertainty shocks because of workers’ willingness to supply extra-hours to keep their consumption level up. Differently, countercyclical markups due to sticky prices predict lower equilibrium hours worked, therefore enabling new-Keynesian models to capture those comovements. Second, and key to our analysis, they show that uncertainty shocks have contractionary effects that are magnified by the constraint imposed by the ZLB on stabilizing conventional monetary policy. Our paper corroborates the predictions by Basu and Bundick (2016) both as regards macroeconomic comovements and as far as the more recessionary effects of uncertainty shocks on real activity are concerned.6

Other recent investigations on the interaction between uncertainty shocks and the ZLB in new-Keynesian frameworks are Johannsen (2014), Basu and Bundick (2015), Fernández-Villaverde, Guerrón-Quintana, Kuester, and Rubio-Ramírez (2015), and Nakata (2016). Johannsen (2014) shows that short-run and long-run fiscal policy uncertainty has large adverse effects on investment and consumption only when the economy is near the ZLB. This is because of the deflationary effects of fiscal policy uncertainty. An increase in fiscal policy uncertainty leads risk averse households to increase their desire to work and save, which in turn reduces inflation. When the ZLB is binding, the deflation cannot be not fully tackled by a Taylor-rule type of systematic monetary policy. As a consequence, a higher equilibrium real interest rate is expected, which depresses investment and consumption and generates a stronger contraction. Basu and Bundick (2015) use a New Keynesian model with nominal rigidities to explore the interaction involving uncertainty shocks, a Taylor rule-type of policy conduct, and a binding ZLB. They show that uncertainty shocks can generate a substantial, and potentially catastrophic, contraction in real activity in presence of a binding ZLB if a central bank sticks to a Taylor rule. This is due to the central bank’s inability to face negative shocks, which contrasts its ability to face positive ones. Such an asymmetry implies that the future expected mean of target variables will be lower, whereas their volatility will be magnified. This enhances precautionary savings, therefore lowering even more consumption, output, and inflation. As a result, agents expect a high real interest rate, something which creates a "contractionary bias", whose size is magnified by heightened uncertainty. Basu and Bundick (2015) show that optimal monetary policy can

6Born and Pfeifer (2015) build a model in which both price and wage markups are present. They show that the key element behind the response of real activity to uncertainty shock is the wage markup (as opposed to the price markup). While not taking a stand on which of the two channels is more relevant, our empirical analysis confirm that uncertainty shocks are able to generate macroeconomic comovements as also predicted by Born and Pfeifer (2015).
attenuate the effects of the endogenous volatility generated by the ZLB by committing to a lower path of future nominal interest rates. Such a state-contingent policy stabilizes the household’s expected distribution of consumption and importantly limits the recessionary effects of uncertainty shocks. Fernández-Villaverde, Guerrón-Quintana, Kuester, and Rubio-Ramírez (2015) show that fiscal policy uncertainty shocks trigger a large negative effect on a number of real activity indicators due to sticky prices and countercyclical markups. In presence of a binding ZLB, the real interest rate cannot fall enough to fully tackle the recessionary effects of a spike in fiscal policy uncertainty. Nakata (2016) studies the role played by increases in the variance of shocks to the discount factor process, which he interprets as increases in uncertainty. He finds a substantially larger reduction in consumption, output, and inflation when the ZLB is in place due to a higher expected real interest rate and lower expected marginal costs. Our findings corroborate the predictions on the effects of uncertainty shocks in normal times and the ZLB proposed by these theoretical analysis.

A related paper is Bianchi and Melosi (2017). Using a microfounded regime-switching DSGE model, they study the missing deflation during the ZLB period and show that it could be due to uncertainty about how policymakers will handle the debt accumulated since 2008. In their model, agents who observed a fiscally-led policy mix implemented in 1970s, during which monetary policy was passive and fiscal policy was active in the sense of Leeper (1991), could very well expect this policy to be restored after the liftoff of the policy rate. In this scenario, future monetary policy would allow inflation and real activity to move to stabilize debt, therefore accommodating active fiscal policy. Hence, this fiscal policy-related uncertainty at the ZLB would sustain the inflation rate even in presence of a drop in real activity. The main goals of Bianchi and Melosi’s (2017) paper vs. ours are different. Bianchi and Melosi (2017) investigate the channel via which the ZLB can induce policy uncertainty and offer a rationale for the lack of deflation at the ZLB. Differently, we are concerned with the real effects of uncertainty shocks at the ZLB. We see our contribution as complementary to theirs.

Methodologically, I-VARs have recently been employed to study the nonlinear effects of macroeconomic shocks. Towbin and Weber (2013) study a panel of open-economy countries to investigate how the reaction of output and investment to foreign shocks is influenced by variables such as external debt, import structure, as well as the exchange rate regime in place. Aastveit, Natvik, and Sola (2013) investigate the impact of monetary policy shocks in high vs. low uncertainty scenarios. Sá, Towbin, and Wieladek (2014) focus on the effects of capital inflows. They study how such effects are affected
by the mortgage market structure and the different securitization in place in different countries. With respect to these studies, our paper fully endogenizes the conditioning variable which determines the switch between the states of interest. From a technical standpoint, our paper is close to Pellegrino (2014). He studies the real effects of monetary policy shocks in presence of time-varying uncertainty by computing fully nonlinear GIRFs that admit switches between states after a shock (in his case, a monetary policy shock). Our paper tackles a different research question, i.e., the effects of uncertainty shocks in normal times vs. when the ZLB is binding.

A strand of the literature examines the effects of uncertainty shocks conditional on the stance of the business or the financial cycle. Caggiano, Castelnuovo, and Groshenny (2014) and Caggiano, Castelnuovo, and Figueres (2017) use a Smooth-Transition VAR to estimate the response of unemployment to uncertainty shocks in recessions. Caggiano, Castelnuovo, and Nodari (2015) employ the same methodology to unveil the power of systematic monetary policy in response to uncertainty shocks in recessions and expansions. Alessandri and Muntaz (2014) use the Chicago Fed’s Financial Condition Index as transition variable to isolate periods in which financial markets are in distress, with the aim of checking whether the real effects of uncertainty shocks depend on the level of financial markets’ strain. Our paper is complementary to those cited above because it focuses on a different source of nonlinearity, i.e., the one implied by the policy rate being at the ZLB.

From a policy perspective, our empirical analysis shows the importance of examining the relation between optimal monetary policy and risk management when policy rates are at the ZLB. Evans, Fisher, Gourio, and Krane (2015) work with AD/AS models and study two channels which make risk management by the central bank optimal, i.e., the "expectations" channel and the "buffer stock" channel. The expectations channel arises when a non-zero likelihood of a binding ZLB in the future leads to lower expected inflation and output today, therefore calling for a counteracting policy easing today. The buffer stock channel arises when persistent processes for output and inflation suggest the opportunity to induce an output and inflation boom today to reduce the likelihood and severity of a binding ZLB tomorrow. Then, in presence of an already binding ZLB and expectations of a future build up of output and inflation, a delayed liftoff of the policy rate is the optimal strategy to implement. Seneca (2016) models the macroeconomic responses of changes in the perception of risk in a model featuring no first moment shocks. Such perception of risk is shown to be important even when the policy rate is not at the ZLB. Given the absence of precautionary savings or a real option channel in
his framework, his study highlights the role played by agents’ expectations over future policy moves triggered by expected risk shocks. Interestingly, Seneca (2016) shows that a policy trade-off between output and inflation stabilization may emerge even in absence of realized volatility shocks as long as perceived movements in risk are large enough to make agents form expectations of a monetary policy constrained by the ZLB. When studying the behavior of his economy at the ZLB, he also finds that postponing the liftoff is optimal.

3 Empirical strategy

3.1 Interacted-VAR

Our goal is to investigate whether the real effects of uncertainty shocks are different when the ZLB is in place. To this end, we augment an otherwise standard linear VAR including measures of real activity, prices, monetary policy stance, and a proxy for uncertainty with an interaction term, which involves two endogenously modeled variables. The first one is the VIX, which is our proxy of uncertainty whose exogenous variations we aim at identifying. The second one is the federal funds rate, which is the proxy for the monetary policy stance and it is employed as a conditioning variable to discriminate between normal times and the ZLB.\(^7\)

Our Interacted-VAR reads as follows:

\[
\begin{align*}
\mathbf{y}_t &= \mathbf{\alpha} + \sum_{j=1}^{k} \mathbf{A}_j \mathbf{y}_{t-j} + \left[\sum_{j=1}^{k} \mathbf{c}_j \text{unc}_t \times ffr_{t-j} \right] + \mathbf{u}_t \quad (1) \\
E(\mathbf{u}_t \mathbf{u}_t') &= \mathbf{\Omega} \quad (2)
\end{align*}
\]

where \(\mathbf{y}_t = [\text{unc}_t, \text{lp}_t, \text{lgdp}_t, \text{linv}_t, \text{lcons}_t, \text{ffr}_t]'\) is the \((n \times 1)\) vector of endogenous variables comprising a measure of uncertainty, the GDP deflator, real GDP, real investment, real consumption, and the federal funds rate, \(\mathbf{\alpha}\) is the \((n \times 1)\) vector of constant terms, \(\mathbf{A}_j\) are \((n \times n)\) matrices of coefficients, and \(\mathbf{u}_t\) is the \((n \times 1)\) vector of error terms, whose covariance matrix is \(\mathbf{\Omega}\). The interaction term in brackets makes an otherwise standard linear VAR a nonlinear I-VAR. The interaction terms involving uncertainty

\(^7\)As anticipated, our exercise aims at identifying the effects of an uncertainty shock conditional on the stance of monetary policy. Our focus on the exogenous driver of uncertainty excludes the possibility of confounding high levels of uncertainty and low values of the federal funds rate with low levels of uncertainty and high realizations of the federal funds rate. The time-varying GIRFs analysis proposed in Section 4.4 confirms that it is the federal funds rate (and not the proxy for uncertainty) the conditioning element considered by our model for the computation of our impulse responses.
and the policy rate \((unc_{t-j} \times ffr_{t-j})\) are associated to the \((n \times 1)\) vectors of coefficients \(c_j\). We model the data in log-levels (with the exception of the federal funds rate and the measure of uncertainty, which are modeled in levels) to preserve the cointegrating relationships among the modeled variables. However, our results remain basically unchanged when estimating our VAR in growth rates (evidence available upon request).

Our I-VAR represents a special case of a Generalized Vector Autoregressive (GAR) model (Mittnik (1990)). In principle, GAR models may feature higher order interaction terms. However, as pointed out by Mittnik (1990), Granger (1998), Aruoba, Bucola, and Schorfheide (2013), and Ruge-Murcia (2015), multivariate GAR models might become unstable when squares or higher powers of the interactions terms are included among the covariates, and it is in general difficult to impose conditions to ensure their stability. Our choice of working only with the \((unc_{t-j} \times ffr_{t-j})\) interaction term enables us to focus on the possibly nonlinear effects of uncertainty shocks due to different levels of the policy rate while preserving stability. Moreover, this choice maximizes the number of degrees of freedom to estimate our I-VAR. Section 4 explores alternative explanations other than the ZLB for the larger impact that uncertainty shocks exert in the December 2008-December 2015 period - such as the Great Recession and credit frictions - by modeling alternative interaction terms that involve uncertainty, an indicator of the business cycle, and a credit spread.

The I-VAR is particularly well suited to address our research questions because it explicitly models an interaction term that clearly connects the uncertainty indicator with the policy rate. In this framework, uncertainty shocks are allowed, but not forced, to have a nonlinear impact on real activity depending on the level of the interest rate. Given that the identification of the normal times and ZLB regimes is dictated by the policy rate level, this feature of the I-VAR model enables us to interpret the macroeconomic effects to uncertainty shocks in light of the theoretical literature modeling these...
shocks as a function of the stance of monetary policy. Relative to alternative nonlinear specifications (e.g. Smooth-Transition VARs, Threshold VARs, Time-Varying Parameters VARs, nonlinear Local Projections), the I-VAR presents a number of advantages in this context. Smooth-Transition VAR models are designed to study gradual transitions from a regime to another and vice versa. Differently, the U.S. economy experienced an abrupt change of its monetary policy stance. This change is well captured by the dynamics of the effective federal funds rate, which moved from 5.25% in July 2007 to 0.15% in December 2008, and then remained below 0.25% for seven consecutive years. Hence, a Smooth-Transition VAR does not seem to represent an appropriate model here. Abrupt changes can be modeled by Threshold-VARs. However, T-VARs would need to estimate separately one model for normal times and one for the ZLB period. This would likely lead to inefficient estimates because of the small number of observations in the ZLB subsample. The I-VAR, instead, allows to use all available observations for estimation while preserving the possibility of identifying different regimes via the nonlinear interaction term. Time-Varying Parameters VARs are technically able to handle a sample like ours that features a small subset of ZLB observations (see Chan and Strachan (2014) for a recent application). However, it would not be immediate to connect time-varying impulse responses to the source of the nonlinearity we focus on in this study, i.e., the ZLB, whereas our I-VAR enables us to analyze whether the (possibly) nonlinear macroeconomic response to an uncertainty shock in the two regimes of interest is due to the relationship between uncertainty and the stance of monetary policy, or rather to different drivers, e.g. the stance of the business and/or the financial cycle. Finally, single-equation nonlinear Local Projections have recently been used in a related context, i.e., to examine the effects of government spending shocks in presence of the ZLB (see Ramey and Zubairy (2016)). Nonlinear Local Projects are powerful when an instrument for the shock one aims at identifying is available. Our analysis deals with financial uncertainty, which is likely to be largely driven by financial volatility shocks but not exclusively so. Hence, a direct application of the single-equation nonlinear Local Projections is not feasible in our case. Differently, our multivariate approach enables us to control for the systematic effect that real activity, inflation, and the policy rate exert on financial uncertainty and, therefore, to isolate the exogenous variations of uncertainty in our sample.
3.2 Generalized Impulse Response Functions

We quantify the regime-specific impact of uncertainty shocks by computing Generalized Impulse Response Functions (GIRFs) à la Koop, Pesaran, and Potter (1996). Formally, the (generalized) impulse response at horizon h of the vector y_t to a shock of size δ computed conditional on an initial history ω_{t-1} of observed histories of y is given by the following difference of conditional means:

$$GIRF_y(h, \delta, \omega_{t-1}) = E[y_{t+h} | \delta, \omega_{t-1}] - E[y_{t+h} | \omega_{t-1}]$$ \hspace{1cm} (3)

GIRFs enable us to keep track of the dynamic responses of all the endogenous variables of the system conditional on the endogenous evolution of the value of the interaction terms in our framework. This is important because an unexpected increase in uncertainty has the potential of driving the economy from normal times to ZLB. In computing GIRFs, we follow Kilian and Vigfusson (2011) and work with orthogonalized residuals to identify uncertainty shocks.

As pointed out by Koop, Pesaran, and Potter (1996), GIRFs depend on the sign of the shock, the size of the shock, and initial conditions. We unveil the importance of initial conditions in Section 4. Experiments on the role of the sign and the size of the shock (not documented here for the sake of brevity) point to a negligible role in our empirical application. The description of the algorithm to compute the generalized responses is provided in the Appendix.

3.3 The data

Our VAR includes measures of U.S. real activity, prices, an indicator of the stance of monetary policy and a proxy of uncertainty. The measures of real activity are real GDP, real gross private domestic investment, and real personal consumption expenditures. Prices are measured by the GDP deflator. We use the effective federal funds rate as a measure of the monetary policy stance. Data are taken from the Federal Reserve Bank of St. Louis’ database.\footnote{We use Gross Domestic Product: Implicit Price Deflator, Base year 2009, Quarterly, Seasonally Adjusted; Real Gross Domestic Product, Billions of Chained 2009 Dollars, Quarterly, Seasonally Adjusted Annual Rate; Real Gross Private Domestic Investment, 3 decimal, Billions of Chained 2009 Dollars, Quarterly, Seasonally Adjusted Annual Rate; Real Personal Consumption Expenditures, Billions of Chained 2009 Dollars, Quarterly, Seasonally Adjusted Annual Rate; and Effective Federal Funds Rate, Percent, Quarterly, Not Seasonally Adjusted. Source: FredII.} The sample size is 1962Q3-2015Q4. The choice of the quarterly frequency is justified by our interest in the response of (among other variables) GDP...
and investment, which are not available at a monthly frequency. Given that the Federal Reserve set its target federal funds rate to the 0-25 basis points range in December 2008, the ZLB regimes in our sample begins in 2008Q4.

Our baseline measure of uncertainty is the VIX, which is a measure of implied stock market volatility.11 The use of the VIX as a proxy for uncertainty has recently been popularized in the applied macroeconomic context by Bloom (2009). Since then, it has been taken as a reference by a number of studies (for a survey, see Bloom (2014)). The reason of its popularity is that it is a real-time, forward-looking measure of implied volatility. Hence, it matches well with uncertainty as an ex-ante theoretical concept. Importantly for our study, the VIX is the empirical measure of uncertainty which best matches the uncertainty process modeled by Basu and Bundick (2016), who examine the role played by the ZLB in magnifying the real effects of uncertainty shocks. This makes the VIX appealing for our analysis, because it enables us to meaningfully compare the impulse responses produced with our I-VAR analysis with those generated by Basu and Bundick’s (2016) theoretical model. Section 4 shows that our results are robust to the employment of an alternative measure of financial uncertainty recently developed by Ludvigson, Ma, and Ng (2016).12

3.4 Specification, identification and empirical evidence in favor of the I-VAR model

We estimate model (1)-(2) via OLS. We impose the same number of lags k for the linear and the nonlinear parts of the I-VAR. According to the Akaike criterion, the optimal number of lags for our baseline VAR (which embeds the VIX as a proxy of uncertainty) is three.13 To identify the uncertainty shocks from the vector of reduced form residuals, we adopt the conventional short-run restrictions implied by the Cholesky decomposition. The ordering of the endogenous variables adopted for the baseline model is: (i) uncertainty, (ii) prices, (iii) output, (iv) investment, (v) consumption, and (vi) federal funds rate. Ordering the uncertainty proxy before macroeconomic aggregates in the vector allows real and nominal variables to react on impact, and it

11 Pre-1986 the VIX index is unavailable. Following Bloom (2009), we extend backwards the series by calculating monthly returns volatilities as the standard deviation of the daily S&P500 normalized to the same mean and variance as the VIX index for the overlapping sample (1986 onwards).

12 The correlation between the VIX and the financial uncertainty index developed by Ludvigson et al. (2016) is 0.74 in our sample. Our Appendix reports a graphical comparison between the two series.

13 Our results are robust to alternative lag-length selection ranging from one to four (evidence available upon request).
is a common choice in the literature (see, among others, Bloom (2009), Leduc and Liu (2016), Caggiano, Castelnuovo, and Groshenny (2014), Fernández-Villaverde, Guerrón-Quintana, Kuester, and Rubio-Ramírez (2015)). Moreover, as anticipated, it is justified by the theoretical model developed by Basu and Bundick (2016). Section 4 documents that our results are robust to ordering uncertainty last.

We provide empirical evidence at the multivariate level in favor of nonlinearity, in particular in favor of the Interacted-VAR model. Given that such a model encompasses a linear VAR, we use a LR-type test for the null hypothesis of linearity versus the alternative of a I-VAR specification. The null hypothesis of linearity is clearly rejected at the 5% significance level. In particular, the likelihood-ratio test suggests a value for the LR statistic $\chi_{18}^2 = 30.33$ with an associated p-value of 0.03.14

4 Normal times vs. ZLB: Empirical evidence

4.1 Baseline results

Figure 1 plots the impulse responses to a one-standard deviation uncertainty shock identified with the VIX along with 68% confidence bands. In normal times, an uncertainty shock triggers a temporary recession. Real GDP and consumption fall by about 0.25% after two quarters, while investment drops of about 2%. Interestingly, all three variables share a common dynamic pattern. After an uncertainty shock, these real activity indicators display a quick drop followed by a rapid recovery and a temporary overshoot. In response to this downturn in economic activity, the federal funds rate falls of about 40 basis points after three quarters, and remains negative for about two years. Prices fall as well, although their response is not significant from a statistical viewpoint.

Our I-VAR model predicts very different macroeconomic responses to an uncertainty shock in the ZLB regime. First, real activity is predicted to experience a much slower but deeper fall. Real GDP falls by about 0.5%, reaching its through after approximately three years. Consumption and investment drop substantially, the former by about 0.5% after three years and the latter by about 2% after two years. Second, the recovery is much slower, with no overshoot. After five years, real GDP is still below its trend, although it takes about three years to go back to it from a statistical standpoint. The

14Similar results are obtained when the LMN measure of uncertainty is employed, with $\chi_{24}^2 = 65.08$ with associated p-values taking values lower than 0.01. The different number of degrees of freedom employed in the test is justified by the different number of lags selected by the Akaike criterion when employing the LMN measure (four lags) and the VIX (three lags), respectively.
same dynamics holds for consumption, while investment recovers relatively more rapidly, remaining significantly below its trend for about two years. In all cases, neither a quick drop-and-rebound nor an overshoot is observed. Moreover, the response of uncertainty to its own shock is more persistent and goes back to the pre-shock level relatively more slowly.

The response of the federal funds rate is key for our analysis. Such response is estimated to be insignificant conditional on the ZLB state. It is important to stress that this is a prediction of the model, and not an a-priori assumption. No ZLB technical constraint is mechanically imposed on this variable. Hence, this is a fully-data driven result that points to the model’s ability to discriminate between monetary policy in normal times vs. in the ZLB regime. In fact, the estimated response of the policy rate in normal times is very different, i.e., the federal funds rate is predicted to fall in a temporary but persistent fashion after an uncertainty shock.

An interpretation of the bigger drop in real activity during the ZLB period is the missing fall in the short-term nominal and real interest rates in presence of the ZLB. As explained in Basu and Bundick (2015, 2016), in a model with nominal rigidities an exogenous increase in uncertainty exerts larger effects on real activity when conventional monetary policy is constrained by the ZLB. In normal times, an increase in uncertainty stimulates precautionary savings and labor supply. Given sticky prices, lower wages do not fully translate in lower prices at an aggregate level. Hence, the price markup increases while real activity falls. However, the central bank tackles the contractionary effects of the uncertainty shock by lowering the nominal interest rate and, consequently, the real ex-ante interest rate. Differently, when the policy rate is at the zero lower bound, the central bank can offset only sufficiently positive shocks, but not negative ones. Consequently, a contractionary bias is in place because, given that the distribution of possible realizations of the policy rate is bounded below, the ex-ante real interest rate is higher than what it would be in absence of the zero lower bound. Given the persistence of the uncertainty shock, rational agents expect also future real rates to be higher than what would occur in normal times. These expectations imply a stronger current negative effects of an uncertainty shock on real activity as well as a more persistent response to the shock.

As noticed above, our impulse responses document the presence of a medium-run real activity overshoot in normal times but not at the ZLB. The theoretical model by Basu and Bundick (2016) focuses on the short-run response of real activity to an uncertainty shock. Hence, it is not designed to replicate a medium-run overshoot. Bloom
(2009) proposes a partial equilibrium model in which nonconvex adjustment costs on
the labor and capital markets imply an inaction region and an optimal "wait-and-see"
behavior after an uncertainty shock. In his model, low-productivity units find it opti-
mal to allocate resources to high-productivity ones after the realization of a volatility
shock in technology. This occurs because the volatility shock in technology widens
the distribution of units over business-conditions. Hence, some units find themselves
over the hiring/investing threshold, while other units find themselves below the fir-
ing/disinvesting one. Because of attrition and business-conditions growth, the mass
of units that have the incentive to hire/invest is larger than the one optimally fir-
ing/disinvesting. Hence, this reallocation of resources generates a temporary overshoot,
which gradually diminishes as the temporarily higher cross-sectional volatility in tech-
nology fades away. All else being equal, this temporary overshoot may be facilitated by
a fall in the real interest rate after the uncertainty shock, which would positively affect
the present discounted value of firms’ profits and, therefore, sustain firm’s investment
and labor demand. Moreover, a fall in the real interest rate would also be associated to
a fall in firms’ marginal costs via a reduction in their rental rate of capital. Given that
this fall in interest rate occurs only in normal times, one would expect the temporary
overshoot in real activity to be present only in absence of a binding ZLB. This is ex-
actly what our impulse responses predict. We speculate that this result speaks in favor
of the consequences at an aggregate level of the reallocation mechanism put forth by
Bloom (2009). Section 4.4 elaborates further on the correlation between the response
of monetary policy to an uncertainty shock and the real activity overshoot.

Our impulse responses offer support to the theoretical predictions proposed in Basu
and Bundick (2015, 2016) and Leduc and Liu (2016) on the fall of real and nominal
variables after an increase in uncertainty. We also find a different shape of the responses
of real activity indicators to uncertainty shocks when exploring normal times vs. ZLB
times, a finding in line with the evidence produced with linear VARs estimated over
different samples by Johannsen (2014), Nodari (2014), Caggiano, Castelnuovo, and
Groshenny (2014), and Fernández-Villaverde, Guerrón-Quintana, Kuester, and Rubio-
Ramírez (2015). In spite of the deeper recession estimated to follow an uncertainty
shock in the ZLB state, inflation is predicted to remain at levels comparable to the
normal times ones, something resembling the "missing disinflation" of the 2007-2009
crisis.

Figure 2 documents the difference in the point estimates of the impulse responses
computed in the two regimes. A negative difference points to stronger contractionary effects at the ZLB. Two main results emerge. First, the negative real effects of uncertainty shocks are confirmed to be statistically stronger in presence of the ZLB for all three measures of real activity we consider in our analysis. Second, the difference in the response of the federal funds rate is positive, and it is basically the mirror image of the reaction of the policy rate in normal times documented in Figure 1. This is exactly what one should expect by an analysis comparing the response of the federal funds rate in normal times, in which the rate is expected to drop after an increase in uncertainty, and in ZLB times, in which the policy rate is bound to stay at zero.

The differences documented in Figure 2 are economically relevant. As documented in Table 2, the peak negative response of investment in ZLB is about 3% larger relative to the one estimated in normal times, and 37% larger in cumulative terms over a five-year span, while the cumulative relative loss in output and consumption is about 12% and 13%, respectively. Overall, this differences point to a large economic cost related by a binding ZLB. Wrapping up, our results point to substantially larger real effects of uncertainty shocks in the ZLB state, above all as regards investment.

The previous results show that uncertainty shocks generate a significant negative response in real activity, and that such response is magnified by the zero lower bound on policy rates. We then investigate how important uncertainty shocks are in explaining business cycle fluctuations in the two regimes. Table 3 reports the results of a Generalized Forecast Error Variance Decomposition (GFEVD) exercise for a forecast horizon of three years computed by adopting the algorithm proposed by Lanne and Nyberg (2016). Three main findings emerge. First, uncertainty shocks are more important

15 We compute differences between the impulse responses in the two states conditional on the same set of bootstrapped simulated samples. In this way, the construction of the test accounts for the correlation between the estimated impulse responses. The empirical density of the difference is based on 1,000 realizations for each horizon of interest.

16 These figures are computed by considering a rescaled version of the differences between normal times and ZLB plotted in Figure 2. Such responses are computed under the assumption of an equally sized uncertainty shock in the two regimes. However, the empirical distribution of the uncertainty shocks estimated via our I-VAR points to a volatility 1.93 times larger in the ZLB regime than in normal times. To take this "scale effect" into account when quantifying the relevance of the ZLB for the response of real activity, we calibrate the size of the uncertainty shock in a regime-specific fashion and re-compute the aforementioned differences with our I-VAR.

17 Lanne and Nyberg (2016) focus on GFEVD analysis conducted by considering the residuals of a reduced-form VAR. We are interested in computing the contribution of structural (orthogonalized) shocks to the variance of the forecast errors of the endogenous variables in our VAR. Hence, we modify their algorithm to calculate the GFEVD to a one-standard deviation shock to all variables included in our analysis. Our Appendix provides further details on our application of Lanne and Nyberg’s (2016) algorithm.
when the economy is at the ZLB. The contribution of uncertainty shocks is estimated to be 12%, 16%, and 13% for the volatility of real GDP, investment, and consumption, respectively. In normal times, these shares drop to 8%, 12%, and 6%. Second, uncertainty shocks are relatively more important for investment than for consumption and output. Third, the forecast error variance of the VIX is largely explained by its own shock in both regimes (85% in normal times and 83% at the ZLB, respectively).¹⁸ All these results are in line with the predictions offered by the theoretical model by Basu and Bundick (2016).

4.2 Robustness checks

We check the solidity of our results to a number of perturbations of the baseline I-VAR model. In particular, we focus on i) different measures of uncertainty and identification schemes; ii) omitted variables. We present our checks below.

Alternative measures of uncertainty/ordering. Our baseline VAR models the VIX as a measure of uncertainty and puts it before real activity indicators in our vector. This way of modeling uncertainty is common in the literature (see, e.g., Bloom (2009), Caggiano, Castelnuovo, and Groshenny (2014), Leduc and Liu (2016)). Moreover, it is in line with the theoretical model by Basu and Bundick (2016), who show that first-moment or non-uncertainty shocks in their framework have almost no effect on the expected volatility of stock market returns. However, a recent contribution by Ludvigson, Ma, and Ng (2016) closely follows the data-rich, factor-approach modelling strategy proposed by Jurado, Ludvigson, and Ng (2015) to construct a financial uncertainty index via the computation of the common component of the volatility of the forecast errors of 147 financial series. Variations in this index are found to: i) significantly affect various real activity indicators; ii) be driven by their own "shocks". Hence, this index is likely to carry relevant information on exogenous changes in financial uncertainty. We then replace the VIX with the LMN financial uncertainty index and re-run our estimates to check the robustness of our impulse responses.

As regards the ordering of the variables, it is of interest to check if our results are robust to placing uncertainty last in our vector. In this way, we maximize the contribution of non-uncertainty shocks to the volatility of the uncertainty proxy and, therefore, challenge the role of uncertainty shocks as a driver of the business cycle. We ¹⁸Interestingly, these numbers remain mostly unchanged if the VIX is ordered last. In such a case, the volatility of the VIX is explained by its own shock for a fraction of 81.5% and 80% in the two regimes, respectively.
then run exercises in which we order either the VIX or the LMN index last in our vector.

Figure 3 collects the impulse responses of our real activity indicators when the economy is at the ZLB and in Normal times conditional on having i) the VIX ordered first in the vector (baseline scenario); ii) the VIX ordered last in the vector; iii) the LMN index ordered first; iv) the LMN index ordered last. The shapes and magnitudes of these responses are very similar across these four cases. Figure 4 reports the differences between the impulse responses in the two regimes. To ease comparison with our baseline analysis, Figure 4 reports the difference between the GIRFs in the two regimes and the 68% confidence bands estimated with our baseline vector along with the differences between the GIRFs for the other three cases we consider. The differences across the four models are quantitatively very similar. This is especially true for investment, for which all differences are included in the 68% confidence bands estimated for our baseline specification at all horizons.

Omitted variables. Another set of robustness checks regards the omission in our baseline specification of potentially relevant variables. Omitting a variable which is relevant to explain the dynamics of real activity during the ZLB phase could inflate the differences documented with our baseline model. We then consider a variety of possibly relevant omitted variables, including financial indicators, credit and house prices, and government debt. We describe the potential relevance of these checks one-by-one and explain how we modify our baseline framework to take the omitted variable issue into account. We document the outcome of each robustness check in Figure 5.

Financial conditions. Stock and Watson (2012) point out that financial strains lead to higher uncertainty, which in turn increases financial risk. Alessandri and Mumtaz (2014), Gilchrist, Sim, and Zakrajšek (2014), Caldara, Fuentes-Albero, Gilchrist, and Zakrajšek (2016), and Alfaro, Bloom, and Lin (2016) find evidence in favor of stronger real effects of uncertainty shocks in periods of high financial stress. It is important to control for measures of financial stress in order to distinguish the role played by uncertainty from that played by financial constraints. Following Alessandri and Mumtaz (2014), we consider a broad measure of financial stress, i.e., the Chicago Fed Financial Conditions Index (FCI). The aim of this index is to offer a synthetic measure of financial stress based on 105 series related to measures of risk, liquidity, and leverage (for a detailed explanation on the construction of this index, see Brave and Butters (2011)). We add the FCI as first variable to our VAR and estimate it over the period 1973Q1-2015Q4. The next Section will deal with nonlinearities in the transmission of

19The choice of the first quarter of this analysis is due to the availability of the FCI, which can be
uncertainty shocks strictly related to financial conditions.

S&P500. The baseline specification is based on the implicit hypothesis that our VAR contains enough information to isolate second moment financial shocks. A way to control for first moment financial shocks is to add a stock market index to our vector and order it before uncertainty. Following Bloom (2009), we run an exercise in which we add the log of S&P500 index to our VAR and order it first.

Credit to the non-financial sector. Schularik and Taylor (2012) use long time series data and a multi-country analysis to show that credit booms are key to understand the propagation mechanism of shocks to the real economy. Mian and Sufi (2009, 2014) and Mian, Rao, and Sufi (2013) highlight the role played by credit to the private sector in generating and prolonging the effects of the Great Recession in the United States. Mian and Sufi (2014) show that the drop in employment experienced between 2007 and 2009 is likely to be due to the earlier credit boom. We then estimate a version of our VAR in which a measure of total credit to private non-financial sector is ordered first in the vector.\(^{20}\)

House prices. Since Iacoviello (2005), there has been a revamped attention toward the relationship between housing market dynamics and the business cycle. Importantly for our exercise, Furlanetto, Ravazzolo, and Sarferaz (2014) show that the effects of uncertainty shocks are dampened if one controls for housing shocks. We then add the log of real home price index computed by Robert Shiller as first variable to our vector.\(^{21}\)

Government debt/deficit. It is well known that monetary policy and fiscal policy are tightly connected when it comes to determining the equilibrium value of inflation and real activity (for an extensive presentation, see Leeper and Leigh (2016)). Christiano, Eichenbaum, and Rebelo (2011) show that the effects of expansionary fiscal policy are much larger when the economy is at the zero lower bound. The U.S. Government implemented the stimulus package known as "American Recovery and Reinvestment Act of 2009" in an attempt to lead the economy out of the Great Recession. We control

\(^{20}\)We use the series "Total credit to private non-financial sector" (adjusted for breaks), which is available on the Federal Reserve Bank of St. Louis’ website. We deflated this series with the GDP deflator.

\(^{21}\)The index is available until 2014Q1 and it can be downloaded from here: http://www.econ.yale.edu/~shiller/data/Fig2-1.xls. Differently from house prices, oil prices are typically associated to high inflation in the 1970s and are considered as one of the drivers of the inflation-output trade-off in that period. An exercise (available upon request) conducted by adding oil prices to our baseline vector confirms the solidity of our findings.
for the role of fiscal policy by conducting an exercise in which the public debt-to-GDP ratio is embedded in our vector.\footnote{The debt-to-GDP ratio is taken from the Federal Reserve Bank of St. Louis’ website and it is ordered third in our VAR. The analysis is conducted with a sample starting from 1966Q1 due to data availability. Virtually identical results are obtained when we use the deficit-to-GDP ratio as a proxy of the fiscal stance (results available upon request).}

Figure 5 depicts the differences between the impulse responses in the ZLB regime vs. normal times estimated with the models described above. To ease comparison with our baseline analysis, it includes also the difference between the GIRFs in the two regimes and the 68\% confidence bands estimated with our baseline vector. While some quantitative differences across estimated models arise, the main message of this Figure is that our baseline results are robust to all checks described above.

4.3 Unconventional monetary policy

The analysis conducted so far has dealt with the effects of uncertainty shocks and their dependence on the stance of conventional monetary policy. As a matter of fact, a number of unconventional monetary policy interventions have been implemented by the Federal Reserve since December 2008 (when the ZLB became binding), including large-scale asset purchases and forward guidance. Such interventions are likely to have influenced long-term interest rates and, therefore, helped the economy out of the 2007-2009 recession also by mitigating the contractionary effects of heightened uncertainty. Our baseline VAR does not feature any variable modeling unconventional monetary policy. This form of misspecification of our model could therefore inflate the differences documented with our previous exercises.

We tackle this issue by estimating three different versions of our baseline framework. The first version takes into account unconventional monetary policy by considering the "shadow rate" introduced by Wu and Xia (2016). They estimate a multifactorial shadow rate term structure model and show that it provides an excellent empirical description of the evolution of the U.S. term structure in presence of the ZLB.\footnote{The idea of the shadow rate has also been explored by, among others, Krippner (2013) and Christensen and Rudebusch (2015). For an extensive analysis, see Krippner (2014).} The idea is that, because of a mix of unconventional monetary policy interventions, the effective rate - which is, the shadow rate - might have been lower than the actual federal funds rate.

We then run a version of our VAR which features the shadow rate produced by Wu and Xia (2016) \textit{in lieu of} the federal funds rate.

The second experiment considers the possibility that the Federal Reserve could have
been able to affect longer term rates via forward guidance while the policy rate was at its lower bound. Swanson and Williams (2014) conduct an empirical exercise focused on the response of interest rates at different maturities to macroeconomic announcements. They show that, during the ZLB period, Treasury yields with one- and two-year maturity were responsive to macroeconomic news throughout the 2008-2010 period in spite of the federal funds rate being stuck at its lower bound. To allow unconventional monetary policy to play a role in our model via the effects on longer term rates, we then replace the federal funds rate with the 1-year Treasury Bill rate and re-estimate the model.

Our third check specifically looks at the balance sheet of the Federal Reserve. Following Gambacorta, Hofmann, and Peersman (2014), we consider the adjusted monetary base as a measure of liability. Gambacorta, Hofmann, and Peersman (2014) show with a panel VAR for eight advanced economies that unconventional monetary policy shocks identified by using such a measure had expansionary effects on real activity while the policy rate was stuck at its effective lower bound. Given its nature of "fast moving variable", we order the adjusted monetary base last in the VAR to allow for contemporaneous responses to an uncertainty shock.

Our results are reported in Figure 6. The top row plots the impulse responses to uncertainty shocks in ZLB obtained with the model with the shadow rate over the responses obtained with our baseline framework and the corresponding 68% confidence bands. No sizeable differences with respect to our baseline results are detected in ZLB. The middle row of the same figure reports the results from the framework that models the 1-year Treasury Bill rate as the policy rate. As in the previous case, no sizeable differences can be detected with respect to the responses obtained in our baseline scenario featuring the federal funds rate as policy variable. The bottom row reports the response of real activity to an uncertainty shock produced with the model with the adjusted monetary base measure. Two results stand out. First, the baseline finding that real activity reacts more to an uncertainty shock at the ZLB is largely confirmed. Second, the presence of liquidity suggests some positive effect on real activity when the

\footnote{We use the adjusted monetary base taken from the Federal Reserve Bank of St. Louis' website. Gambacorta, Hofmann and Peersman (2014) also use a measure of assets. To our knowledge, a measure of total assets related to all Federal Reserve banks covering our sample 1962Q3-2015Q4 is not available at quarterly frequencies. The series "All Federal Reserve Banks: Total Assets" is available at quarterly frequencies starting from 2003Q1 (source: Federal Reserve Bank of St. Louis). Total assets and the adjusted monetary base display a remarkably similar behavior in the 2003Q1-2015Q4 period, i.e., they share a distinct upward trend and they are highly correlated - degree of correlation: 0.95 - at cyclical frequencies as identified by the Hodrick-Prescott filter (smoothing weight: 1,600).}
economy is at the ZLB. In particular, relative to the baseline case, all real activity indicators display a less pronounced trough and a faster recovery to the pre-shock level.25 We speculate that liquidity measures could add relevant information to models featuring (official or shadow) policy rates when it comes to quantifying the responses of real activity to an uncertainty shock (and, possibly, to macroeconomic shocks in general). However, these responses are statistically in line with those obtained with our baseline model as regards the ZLB phase. Wrapping up, controlling for the shadow rate, longer term rates, and measures of liquidity does not lead to a significant change in our impulse responses.

4.4 Time-varying GIRFs

The results we have shown so far focus on the average response of real activity to an uncertainty shock. This is obtained by integrating out the histories (initial conditions) within each regime. Given that our model is a nonlinear one, histories affect the computation of the GIRFs (Koop, Pesaran, and Potter (1996)). We then turn to the examination of the role played by histories for our dynamic responses to an uncertainty shock.26

Figure 7 reports three sets of results. The left column depicts the evolution of the GIRFs to a one-standard deviation uncertainty shock for all three real activity indicators we consider. In particular, per each given variable it plots the area identified by the maximum and minimum deviations from the trend conditional on each given history.27 An evident within-state heterogeneity is present. In particular, looking at normal times, the evidence of overshoot (which is, deviations from the trend which take a positive value) changes substantially over time. The impulse responses in the late 1970s are those with the highest overshoot realizations, while those in 2000s - well before the ZLB - are associated with the weakest evidence of overshoot.

25Unsurprisingly, the responses estimated with these three models accounting for unconventional monetary policy display virtually no difference with respect to our baseline ones in normal times, when unconventional policies were not in place.

26Histories are dated by considering the first lag of the VAR as the reference quarter. For instance, a history dated 2008Q4 refers to an uncertainty shock hitting in the 2009Q1 quarter and whose impulse responses are conditional on the values (initial conditions) for the quarters 2008Q4, 2008Q3, and 2008Q2, which correspond to the three lags of our VAR.

27The plots proposed in the first two columns of Figure 7 are bidimensional views of tridimensional objects, i.e., the values of the impulse response of each of the three real activity indicators we consider along different initial conditions and horizons. These tridimensional objects are reported in our Appendix.
The central column plots the GIRFs over a five-year horizon for every history belonging to the two regimes we identify (solid blue lines for normal times, dashed red lines for the ZLB regime). The dispersion in the ZLB regime is much lower. This result is possibly due to the lower number of observations in the ZLB subsample, which amounts to about 13% of all observations in our full sample. The mass depicted by the bundle of GIRFs in normal times displays a wider dispersion but tends to be quite distinct with respect to that in ZLB times. This confirms our main finding, i.e., the real effects of uncertainty shocks are estimated to be stronger when the economy is at the ZLB. However, some of the responses in normal times are actually quite similar to the responses we estimate for the ZLB period. In particular, the absence of overshoot realizations for the histories in early 2000s - whose impulse responses are indicated with arrows in the Figure - resembles the one we observe for the ZLB phase.

The evidence depicted in the first two columns of Figure 7 seems to point to an intriguing correlation between the absence of real activity overshoot after an uncertainty shock and histories characterized by little room to manoeuvre the policy rate. In fact, the early 2000s were characterized by low interest rates given the response of Alan Greenspan to the burst of the dot-com bubble, while the ZLB phase is characterized by a policy rate close to zero due to the policy response to the financial crisis. The right column of Figure 7 confirms that this correlation is strongly present in the data. Such column reports scatterplots constructed by considering, per each given history, the estimated peak response of real activity against the estimated peak reduction of the interest rate after an uncertainty shock. There is a clear relationship between the observed overshoot dynamics in real activity and the response of conventional monetary policy. The peak response in real activity is indeed higher in correspondence of larger reductions in the federal funds rate in response to an exogenous hike in uncertainty. The degree of correlation between the realizations of these two responses is as large as -0.97 for all real activity indicators that we consider.

As anticipated in Section 4.1, Bloom’s (2009) model on heterogenous firms along the productivity dimension delivers a temporary medium-term overshoot caused by the reallocation of resources from low- to high-productivity firms after an uncertainty shock. Our evidence suggests that lowering the interest rate is key for observing an overshoot in real activity in our model. Searching for a structural interpretation, our

\footnote{The Appendix reports a related exercise. In particular, we select five initial histories: the beginning of the ZLB period, plus four other histories selected by focusing on "extreme events", i.e., we select, within each business cycle state (recessions and expansions), the two histories associated to the "highest" realizations of the uncertainty shocks. The contractionary effects of uncertainty shocks}
evidence can be linked to Bloom’s model as follows. First, a lower nominal interest rate leading to a lower real rate exerts a positive influence on firms’ profits because it increases their present discounted value. Second, a lower real interest rate reduces firms’ marginal costs via the downward pressure that it exerts on firm’s rental rate of capital. Speculatively, both these elements could facilitate the reallocation of resources from low- to high-productivity firms which is behind the overshoot documented in Bloom’s (2009) model. This evidence points to a channel alternative to the ones documented in Basu and Bundick (2016) and relative to the role played by monetary policy in the transmission of uncertainty shocks to the real side of the economy.29

4.5 The ZLB, the Great Recession and the Great Financial Crisis

Our I-VAR analysis aims at quantifying the effects of uncertainty shocks in two different regimes, normal times and the ZLB. This is the reason why our baseline framework models an interaction term involving a measure of uncertainty and the policy rate. However, some contributions in the literature point to nonlinearities unrelated to the ZLB. Uncertainty shocks may exert stronger effects in recessions (Caggiano, Castelnuovo, and Groshenny (2014), Caggiano, Castelnuovo, and Nodari (2015), Caggiano, Castelnuovo, and Figueres (2017)). This may occur because of a lower effectiveness of monetary policy in tackling negative shocks (see, e.g., Mumtaz and Surico (2015) and Tenreyro and Thwaites (2016)), and/or because of a stickier labor market during downturns (Cacciatore and Ravenna (2015)). Moreover, the interaction between uncertainty shocks and financial frictions may intensify during periods of high financial stress (Alessandri and Mumtaz (2014), Gilchrist, Sim, and Zakrajšek (2014), Caldara, Fuentes-Albero, Gilchrist, and Zakrajšek (2016)). Indeed, the 2007-2009 period was characterized by the joint presence of the ZLB, an exceptionally severe real crisis, and the Great Financial Crisis, which featured unprecedented levels of financial stress. As a consequence, the results documented above could be assigning an exaggerated role to the ZLB because of the omission of other channels which were contemporaneously at

29Mumtaz and Surico (2015) and Tenreyro and Thwaites (2016) investigate the ability of a central bank to influence real activity during recessions. Differently, our exercise focuses on the relationship between the response of systematic monetary policy to an uncertainty shock and the temporary overshoot in real activity occurring after such shock.
work, i.e., the business cycle channel and the financial cycle.

We tackle this identification issue by estimating two different versions of the I-VAR model (1)-(2). These two alternative frameworks are characterized by alternative interaction terms which are modeled to capture the nonlinearities due to the business cycle channel and the financial channel.\(^{30}\) Formally, we capture the role played by the business cycle stance by estimating the following model:

\[
y_t = \alpha + \sum_{j=1}^{k} A_j y_{t-j} + \left[\sum_{j=1}^{k} c_j unc_{t-j} \times \Delta \ln GDP_{t-j} \right] + u_t \tag{4}
\]

\[
E(u_t | u_t') = \Omega \tag{5}
\]

where \(\Delta \ln GDP_{t-j} \equiv \ln GDP_{t-j} - \ln GDP_{t-j-1}\) is the quarterly growth rate of GDP, which we take as a proxy of the stance of the business cycle. We estimate this model over the sample 1962Q3-2015Q4 and compute GIRFs conditional on the ZLB period 2008Q4-2015Q4, which is the one of interest for our discussion. If the driver of our baseline results is not the stance of monetary policy but rather business cycle conditions, we would expect to find the responses in this period to be similar to those associated to the very same ZLB period in our baseline analysis. If, instead, such responses turn out to be different, then our baseline impulse responses are not "observationally equivalent" to those produced with the alternative model (4)-(5). Such evidence would lead us to conclude that the key driver of the more recessionary responses in presence of the ZLB is the ZLB per se, and not the contemporaneous occurrence of the Great Recession. Notice that this exercise assumes the growth rate of real GDP to be a good proxy for the stance of the business cycle. Chauvet (1998) and Chauvet and Piger (2008) obtain smoothed recession probabilities for the United States from a Dynamic-Factor Markov-Switching model applied to coincident business cycle indicators such as non-farm payroll employment, industrial production, real personal income excluding transfer payments, and real manufacturing and trade sales. Reassuringly, the correlation between the growth rate of real GDP we use in this exercise and their smoothed recession probability - available on the Federal Reserve Bank of St. Louis’ website - is as large as \(-0.60\).

Figure 8 - top row reports the point estimates and the 68\% confidence bands obtained with our baseline model as well as the GIRFs obtained with the alternative framework (4)-(5). The responses estimated with this model and conditional on the ZLB initial

\(^{30}\)In principle, the I-VAR could be estimated by allowing for multiple interaction terms simultaneously. However, as anticipated in Section 3.1, the estimation of I-VARs featuring more than one interaction term to jointly model more than one of the channels discussed in the text failed to deliver stable models.
conditions are remarkably similar to those produced with the baseline model in normal times, i.e., real activity displays a quick drop and rebound and a temporary overshoot. Interestingly, the responses are included for all real activity indicators within the 68% confidence bands associated to normal times by our baseline I-VAR. This result suggests that the macroeconomic dynamics documented with our baseline framework as regards the ZLB phase are not driven by the contemporaneous occurrence of the Great Recession.

The second check looks at the role played by financial stress during the ZLB period. Alessandri and Muntaz (2014) work with a nonlinear FAVAR framework and show that uncertainty shocks exert stronger effects in periods of high financial strain. The same result is present in the empirical investigations proposed by Gilchrist, Sim, and Zakrajšek (2014) and Caldara, Fuentes-Albero, Gilchrist, and Zakrajšek (2016). As already mentioned, the ZLB period we focus on is characterized by an exceptionally high level of financial stress. To take into account the possible asymmetry due to financial strain, we then estimate the following I-VAR specification:

\[y_t = \alpha + \sum_{j=1}^{k} A_j y_{t-j} + \left[\sum_{j=1}^{k} c_j \text{unc}_{t-j} \times GZ_{t-j} \right] + u_t \]

\[E(u_t u'_t) = \Omega \]

where \(GZ_t \) indicates the measure of credit spread proposed by Gilchrist and Zakrajšek (2012) (GZ henceforth). As before, we estimate this model over the sample 1962Q3-2015Q4 and compute GIRFs by integrating over the period 2008Q4-2015Q4.\footnote{The original version of the GZ spread is available from 1973. Our baseline analysis starts in 1962. Then, we regress the GZ spread against the difference between i) the AAA corporate bonds and the 10-year Treasury yield; ii) the BAA corporate bonds and the 10-year Treasury yield; iii) the 6-month T-Bill rate and the 3-month T-Bill rate; iv) the 1-year Treasury yield and the 3-month T-Bill rate; v) the 10-year Treasury yield and the 3-month T-Bill rate. We do this for the sample 1973-2015, and then we use the fitted values of the regression to backcast the GZ spread and match our baseline sample. All data are taken from the Federal Reserve Bank of St. Louis’ database.}

The logic of this exercise is the same as the one in the previous exercise. If the driver of our baseline results is not the stance of monetary policy but rather the financial strain, model (6)-(7) should return impulse responses which are similar to the baseline ZLB and different from the ones that the baseline model associates to normal times.
Figure 8 - bottom row shows that this is not the case. In fact, if we let the interaction between uncertainty and the GZ credit spread capture the nonlinearity of the effects of uncertainty shocks, we get a response of real activity in the ZLB sample which is actually very similar to the one that our baseline model associates to normal times. Noticeably, as in the previous case, the responses of all real activity measures lie within the 68% confidence bands estimated for normal times in the baseline I-VAR.

Our results should be seen as complementary with respect to those proposed by papers that study the effects of uncertainty shocks in good and bad times (Caggiano, Castelnuovo, and Groshenny (2014), Caggiano, Castelnuovo, and Nodari (2015), Caggiano, Castelnuovo, and Figueres (2017)) or in periods of high financial stress (Alessandri and Mumtaz (2014), Gilchrist, Sim, and Zakrajšek (2014), and Caldara, Fuentes-Albero, Gilchrist, and Zakrajšek (2016)). In fact, these papers and ours tackle different research questions. Our paper explicitly deals with the ZLB, which is quite a peculiar event in the U.S. post-WWII economic history. Hence, a correct reading of our findings is that the Great Recession and the high levels of financial stress occurred during the global financial crisis would not be enough to explain the bigger impact on real activity documented by our impulse responses during the 2008Q4-2015Q4 period. Differently, the ZLB is able to generate significantly different responses during the ZLB as opposed to the pre-2008Q4 period. Our conclusion is that heightened uncertainty in presence of the ZLB makes things even worse than they would be in a world in which the policy rate is away for its bound.

Finally, a different question regards the role played by first moment shocks which may have originated before the ZLB period, led the U.S. economy to the ZLB, and had a large and negative impact during the ZLB period. In this case, such shocks could be behind our results, and the larger response of real activity to uncertainty shocks would not be caused by the ZLB, but simply correlated to it. We check for this possibility by running an exercise in which we compute the GIRFs by shutting down future non-uncertainty shocks one at a time. In conducting this exercise, we focus on shocks to prices, output, investment, and consumption. If one of these shocks (or a combination of them) is actually behind the results documented in the previous Section, we should observe a drastic change in our GIRFs and, in particular, more similar responses between regimes. The outcome of this exercise, reported in the Appendix for the sake of brevity, confirms that our main conclusion on the deeper recession opened by an uncertainty shock during the ZLB regime remains unaffected.
5 Conclusions

This paper works with a nonlinear Interacted-VAR framework and post-WWII U.S. data and shows that uncertainty shocks triggered a deeper recession during the zero lower bound period than in times of unconstrained monetary policy. This result is shown not to be driven by other macroeconomic shocks that occurred during the Great Recession or by the presence of more severe financial conditions, and it is robust to different ways of modeling unconventional monetary policy. Our paper also documents a clear correlation between the response of monetary policy authorities to uncertainty shocks when the policy rate is away from the bound and the presence of a temporary overshoot of real activity. In particular, the more aggressive the monetary policy easing, the larger the overshoot.

From a modeling standpoint, our results support the employment of general equilibrium frameworks i) which predict a larger response of real activity to an uncertainty shock in presence of the ZLB, and ii) are able to generate macroeconomic comovements after an uncertainty shock. Models by Johannsen (2014), Fernández-Villaverde, Guerrón-Quintana, Kuester, and Rubio-Ramírez (2015), and Basu and Bundick (2015, 2016) are promising proposals along these lines. As regards the real activity overshoot caused by a monetary policy shock, our results support models featuring heterogeneous units and a real option channel as in Bloom (2009), who shows that the reallocation of resources from low- to high-productivity firms can be facilitated by lower factor prices.

To our knowledge, the extant literature features no model contemporaneously delivering comovements, temporary overshoot, and a larger response of real activity to uncertainty shocks in presence of the ZLB. We believe the combination of sticky prices and heterogeneous units in a model in which precautionary savings and real options play a meaningful role to be a promising avenue for future research.

Finally, our results clearly call for studies focusing on optimal monetary policy in presence of the ZLB when uncertainty shocks hit an economic system. Contributions like Basu and Bundick (2015), Evans et al. (2015), and Seneca (2016) represent relevant starting points for this research agenda.

References

Table 1: **Uncertainty-Real activity correlations: Normal times vs. ZLB.** Real GDP, investment, and consumption considered in quarterly growth rates. Normal times: 1962Q3-2008Q3, ZLB: 2008Q4-2015Q4. Uncertainty proxied by the VIX and by the financial uncertainty index estimated by Ludvigson, Ma, and Ng (2016) (LMN in the Table). LMN’s proxy refers to an uncertainty horizon equal to one month.
Table 2: **Impact of the ZLB on real activity: Percentage deviations with respect to normal times.** Peak and cumulated percentage deviations of the responses of real activity indicators in ZLB and normal times. Responses computed by calibrating the standard deviations of the shocks in the two regimes to replicate the standard deviation of the empirical densities of the uncertainty shocks estimated by our model. Cumulated responses refer to a 5-year span.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Peak</th>
<th>Cumul.</th>
</tr>
</thead>
<tbody>
<tr>
<td>GDP</td>
<td>-0.87%</td>
<td>-11.72%</td>
</tr>
<tr>
<td>Investment</td>
<td>-2.87%</td>
<td>-37.21%</td>
</tr>
<tr>
<td>Consumption</td>
<td>-0.91%</td>
<td>-13.10%</td>
</tr>
<tr>
<td>Variable</td>
<td>Normal times</td>
<td>ZLB</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------</td>
<td>-----</td>
</tr>
<tr>
<td>GDP</td>
<td>0.08</td>
<td>0.12</td>
</tr>
<tr>
<td>Investment</td>
<td>0.12</td>
<td>0.16</td>
</tr>
<tr>
<td>Consumption</td>
<td>0.06</td>
<td>0.13</td>
</tr>
<tr>
<td>FFR</td>
<td>0.14</td>
<td>0.00</td>
</tr>
<tr>
<td>Price</td>
<td>0.01</td>
<td>0.02</td>
</tr>
<tr>
<td>VIX</td>
<td>0.85</td>
<td>0.83</td>
</tr>
</tbody>
</table>

Table 3: **Generalized Forecast Error Variance Decomposition: Contribution of uncertainty shocks in the two regimes.** GFEVD computed according to Lanne and Nyberg (2016)’s algorithm for a 1-standard deviation shock to all variables. Forecast horizon: 12 quarters.
Figure 1: Uncertainty shocks and the ZLB: Generalized Impulse Responses to a one-standard deviation uncertainty shock. Uncertainty proxied by the VIX. Dashed-red line: ZLB regime. Solid-blue line: Normal times. Solid-red lines and gray areas: 68% confidence bands.
Figure 2: Differences in Generalized Impulse Responses between ZLB and Normal times. Uncertainty proxied by the VIX. Solid black line: Difference between the average GIRF to a one-standard deviation uncertainty shock in the ZLB state and in the Normal times state. Grey areas: 68% confidence bands.
Figure 3: Uncertainty shocks and the ZLB: Alternative measures/ordering of uncertainty. GIRFs to a one-standard deviation uncertainty shock. Proxies of uncertainty: VIX and LMN (measure proposed by Ludvigson, Ma and Ng (2016)). Row 1: VIX ordered first. Row 2: VIX ordered last. Row 3: LMN ordered first. Row 4: LMN ordered last.
Figure 4: **Alternative measures/ordering of uncertainty: Differences in GIRFs between ZLB and Normal times.** Differences between the average GIRF to a one-standard deviation uncertainty shock in the ZLB state and in the Normal times state for different empirical models. Uncertainty proxied by the either the VIX or the LMN financial uncertainty proxy. Grey areas: 68% confidence bands relative to the baseline case.
Figure 5: **Uncertainty shocks and the ZLB: Differences: Robustness checks.** Differences between the average GIRF to a one-standard deviation uncertainty shock in the ZLB state and in the Normal times state for different empirical models. Uncertainty proxied by the VIX. Grey areas: 68% confidence bands relative to the baseline case.
Figure 6: Uncertainty shocks and the ZLB: Unconventional monetary policy. Solid-blue line: Baseline GIRF to a one-standard deviation uncertainty shock in the Normal times state. Dashed-red line: Baseline GIRF to a one-standard deviation uncertainty shock in the ZLB state. Uncertainty proxied by the VIX. Solid-red lines: 68% confidence bands for the ZLB regime. Starred-green lines refer to unconventional monetary policy scenarios. Top row: GIRF to a one-standard deviation uncertainty shock in the ZLB state when the federal funds rate is replaced by the shadow rate in the otherwise baseline VAR. Middle row: GIRF to a one-standard deviation uncertainty shock in the ZLB state when the federal funds rate is replaced by the 1-year Treasury Bill rate rate in the otherwise baseline VAR. Bottom row: GIRF to a one-standard deviation uncertainty shock in the ZLB state when adjusted monetary base is added to the VAR as last variable of the vector.
Figure 7: Time-varying GIRFs: Normal times vs. ZLB. Uncertainty proxied by VIX. Left column: Evolution of GIRFs over histories (initial conditions). Histories on the x-axis of the left-panels stand for the first lagged value of the quarter in which the uncertainty shock occurs, e.g., the history dated 2008Q4 is associated to an uncertainty shock occurring in 2009Q1. Superior edge: Peak of the response per each given history. Inferior edge: Trough of the response per each given history. Central column: State-specific responses conditional on histories and plotted over horizons. Blue GIRFs: Point estimates related to Normal times. Red GIRFs: Point estimates related to the ZLB state. Right column: Scatterplots relating the maximum value of the response of real activity (horizontal axis) to the minimum value of the response of the policy rate (policy easing, vertical axis) after an uncertainty shock. Statistically insignificant responses of the federal funds rate in ZLB are set to zero.
Figure 8: Uncertainty shocks during the ZLB period: Role of the business cycle and financial frictions. GIRFs to a one-standard deviation uncertainty shock in the ZLB state and in the Normal times state according to our baseline model and to models featuring alternative interaction terms. Solid-blue line: Baseline GIRF to a one-standard deviation uncertainty shock in the Normal times state. Dashed-red line: Baseline GIRF to a one-standard deviation deviation uncertainty shock in the ZLB state. Starred-magenta lines refer to models featuring alternative interaction terms. Top row: Interaction terms involving uncertainty and real GDP growth rate. Bottom row: Interaction terms involving uncertainty and the GZ spread. Grey areas and solid-red lines: 68% confidence bands relative to the baseline case. Uncertainty proxied by the VIX.
Appendix of the paper "Estimating the Real Effects of Uncertainty Shocks at the Zero Lower Bound", by Giovanni Caggiano, Efrem Castelnuovo, and Giovanni Pellegrino

Computation of the Generalized Impulse Response Functions

The algorithm for the computation of the Generalized Impulse Response Functions follows the steps suggested by Koop, Pesaran, and Potter (1996), and it is designed to simulate the effects of an orthogonal structural shock as in Kilian and Vigfusson (2011). The idea is to compute the empirical counterpart of the theoretical $GIRF_y(h, \delta, \omega_{t-1})$ of the vector of endogenous variables y_t, h periods ahead, for a given initial condition $\omega_{t-1} = \{y_{t-1}, \ldots, y_{t-k}\}$, k is the number of VAR lags, and δ is the structural shock hitting at time t. Following Koop, Pesaran, and Potter (1996), such GIRF can be expressed as follows:

$$GIRF_y(h, \delta, \omega_{t-1}) = E[y_{t+h} | \delta, \omega_{t-1}] - E[y_{t+h} | \omega_{t-1}]$$

where $E[\cdot]$ is the expectation operator, and $h = 0, 1, \ldots, H$ indicates the horizons from 0 to H for which the computation of the GIRF is performed.

Given our model (1)-(2), we compute our GIRFs as follows:

1. we pick an initial condition ω_{t-1}. Notice that, given that uncertainty and the policy rate are modeled in the VAR, such set includes the values of the interaction terms $(\text{unc} \times \text{fr})_{t-j}$, $j = 1, \ldots, k$;

2. conditional on ω_{t-1} and the structure of the model (1)-(2), we simulate the path $[y_{t+h} | \omega_{t-1}]^r$, $h = [0, 1, \ldots, 19]$ (which is, realizations up to 20-step ahead) by loading our VAR with a sequence of randomly extracted (with repetition) residuals $\tilde{u}_{t+h} \sim d(0, \hat{\Omega})$, $h = 0, 1, \ldots, H$, where $\hat{\Omega}$ is the estimated VCV matrix, $d(\cdot)$ is the empirical distribution of the residuals, and r indicates the particular sequence of residuals extracted;

3. conditional on ω_{t-1} and the structure of the model (1)-(2), we simulate the path $[y_{t+h} | \delta, \omega_{t-1}]^r$, $h = [0, 1, \ldots, 19]$ by loading our VAR with a perturbation of the randomly extracted residuals $\tilde{u}_{t+h} \sim d(0, \hat{\Omega})$ obtained in step 2. In particular, we Cholesky-decompose $\hat{\Omega} = \hat{C} \hat{C}'$, where \hat{C} is a lower-triangular matrix. Hence,
we recover the orthogonalized elements (shocks) $\tilde{e}_t^r = \tilde{C}^{-1}\tilde{u}_t^r$. We then add a quantity $\delta > 0$ to the $\tilde{e}_{unc,t}^r$, where $\tilde{e}_{unc,t}^r$ is the scalar stochastic element loading the uncertainty equation in the VAR. This enable us to obtain \tilde{e}_t^r, which is the vector of perturbed orthogonalized elements embedding $\tilde{e}_{unc,t}^r$. We then move from perturbed shocks to perturbed residuals as follows: $\tilde{u}_t^r = \tilde{C}\tilde{e}_t^r$. These are the perturbed residuals that we use to simulate $[y_{t+h} | \delta, \omega_{t-1}]^r$;

4. we compute the difference between paths for each simulated variable at each simulated horizon $[y_{t+h} | \delta, \omega_{t-1}]^r - [y_{t+h} | \omega_{t-1}]^r$, $h = [0, 1, ..., 19]$;

5. we repeat steps 2-4 a number of times equal to $R = 500$. We then store the horizon-wise average realization across repetitions r. In doing so, we obtain a consistent estimate of the GIRF per each given initial quarter of our sample, i.e., $GIRF_y(h, \delta, \omega_{t-1}) = \bar{E}[y_{t+h} | \delta, \omega_{t-1}] - \bar{E}[y_{t+h} | \omega_{t-1}]$, $h = [0, 1, ..., 19]$. If a given initial condition ω_{t-1} leads to an explosive response (namely if this is explosive for most of the R sequences of residuals \tilde{u}_{t+h}^r, in the sense that the response of the shocked variable diverges instead than reverting to zero), then such initial condition is discarded (i.e., they are not considered for the computation of state-dependent GIRFs in step 6);\(^1\)

6. history-dependent GIRFs are then averaged over a particular subset of initial conditions of interest to produce the point estimates for our state-dependent GIRFs. To do so, we set $T_{ZLB} = 2008Q4$. If $t < T_{ZLB}$, then the history ω_t is classified as belonging to the "Normal times" state, otherwise to the "ZLB" one;

7. confidence bands surrounding the point estimates obtained in step 6 are computed via a bootstrap procedure. In particular, we simulate $S = 1,000$ samples of size equivalent to the one of actual data. Then, per each dataset, we i) estimate our nonlinear VAR model; ii) implement steps 1-6.\(^2\) In implementing this procedure the initial conditions and VCV matrix used for our computations now depend on the particular dataset s used, i.e., ω_{t-1}^s and Ω_t^s. Confidence bands are the constructed by considering the 84th and 16th percentiles of the resulting distribution of state-conditional GIRFs. As regards the implementation of step 6, due to

\(^1\)This never happens for our responses estimated on actual data. We verified that it happens quite rarely as regards our bootstrapped responses.

\(^2\)The bootstrap algorithm we use is similar to the one used by Christiano, Eichenbaum, and Evans (1999) (see their footnote 23). The code discards the explosive artificial draws to be sure that exactly 1,000 draws are used. In our simulations, this happens a negligible fraction of times.
the randomness of the realization of the residuals, we classify as ZLB observations those corresponding to the lowest 13% realizations of the federal funds rate in each given simulated sample, 13% being the share of the ZLB realizations out of the overall number of observations in the actual sample we employ in our empirical analysis.\footnote{If dealing with a shorter sample, this reference is modified accordingly.}

Computation of the Generalized Forecast Error Variance Decomposition

The algorithm for the computation of the state-dependent Generalized Forecast Error Variance Decomposition (GFEVD) for our nonlinear VAR model is similar to the one proposed in Lanne and Nyberg (2016). The innovations are: i) it is designed to simulate the importance of an orthogonal structural shock, and ii) it considers a one standard deviation shock in each variable. The expression at the basis of our computation of the GFEVD is the same proposed by Lanne and Nyberg (2016, equation 9). In particular, conditional on a specific initial history $\mathbf{\omega}_{t-1}$ and a forecast horizon of interest z, the GFEVD D_{ij} that refers to a variable i and a shock j whose size is δ_j is given by:

$$GFEVD_{ij}(z, \mathbf{\omega}_{t-1}) = \frac{\sum_{h=1}^{z} GIRF_{yi}(h, \delta_j, \mathbf{\omega}_{t-1})^2}{\sum_{j=1}^{n} \sum_{h=1}^{z} GIRF_{yi}(h, \delta_j, \mathbf{\omega}_{t-1})^2} \quad i, j = 1, ..., n \quad (A1)$$

where h is an indicator keeping track of the forecast errors, and n denotes the number of variables in the vector \mathbf{y}.\footnote{Expression (A1) gives a GFEVD that by construction lies between 0 and 1, and for which the contribution of all the shocks on a given variable sum to 1.}

Differently from Lanne and Nyberg (2016), in our case the object $GIRF_{yi}(\cdot)$ in the formula refers to GIRFs à la Koop, Pesaran, and Potter (1996) computed by considering an orthogonal shock as in Kilian and Vigfusson (2011).\footnote{The object $GIRF_{yi}(\cdot)$ in Lanne and Nyberg’s (2016) expression refers to the GIRFs à la Pesaran and Shin (1998). This definition of the GIRF refers to a non-orthogonalized shock and it can be applied both to linear and to nonlinear VAR models. Details can be found in Pesaran and Shin (1998) and Lanne and Nyberg (2016).} In our application we are interested in the contribution of an identified uncertainty shock to the GFEVD of all the variables in the vector \mathbf{y}. Further, while formula (A1) defines the GFEVD for a given history, we are interested in computing a state-conditional GFEVD referring to a set of histories.

Given our model (1)-(2), we compute our state-dependent GFEVD for Normal times and ZLB by following the steps indicated below. In particular, we:
1. consider an orthogonal shock equal to a standard deviation in each variable of the estimated I-VAR model. This is equivalent, for a Cholesky decomposition, to taking a vector of shocks equal to \((\delta_1, \delta_2, \ldots, \delta_n) = (1, 1, \ldots, 1)\) in our algorithm in the previous Section;\(^6\)

2. pick a history \(\omega_{t-1}\) from the set of all histories;

3. compute the \(GIRF_y(\cdot, \cdot, \omega_{t-1})\) for each \(\delta_j\) \((j = 1, \ldots, n)\) and for each \(h \leq z\) according to points 2-5 of the algorithm in the previous Section;

4. plug the GIRFs computed in step 3 into equation (A1) to obtain \(GFED_{ij}(z, \omega_{t-1})\) for the particular forecast horizon \(z\) and history \(\omega_{t-1}\) considered;

5. repeat steps 2–4 for all the histories, distinguishing between the histories belonging to the "Normal times" state and the "ZLB" one (see the definition at point 6 of the GIRFs algorithm);

6. compute the state-dependent GFEVD for the "Normal times" state and the "ZLB" one by computing the average of the \(GFED_{ij}(z, \cdot)\) across all the histories relevant for the two regimes.

Extra results and material

Figure A1 plots our time-varying GIRFs (documented in Section 4.4 in the paper) in a tridimensional fashion.

Figure A2 shows selected GIRFs which are intended to shed light on the relevance of initial conditions and, in particular, on the role of the "interest rate cycle" (see discussion in the paper). This is the same figure plotted in the paper, which is here enriched by the presence of statistical bands. This evidence confirms that histories characterized by low values of the nominal interest rate are associated to deeper and longer lasting recessions, which are such also from a statistical standpoint.

Figure A3 plots the two measures of financial uncertainty considered in the paper, i.e., the VIX and the common component of the volatility of the forecast errors of 147 financial indicators computed by Ludvigson, Ma, and Ng (2016) on the basis of the methodology developed by Jurado, Ludvigson, and Ng (2015). The correlation between

\(^6\)The size of the shock matters in a nonlinear model. The use of a one standard deviation shock in all variables allows our GFEVD algorithm to return the usual Forecast Error Variance (FEV) and Forecast Error Variance Decomposition (FEVD) quantities referred to an orthogonal shock when the algorithm is applied to a standard linear VAR model.
these two measures in our sample is 0.74. Notice that the VIX is available since 1990. Following Bloom (2009), we consider the volatility of stock market returns as a proxy for the VIX for the pre-1990 period.

Figure A4 refers to an exercise we conducted to be sure that our GIRFs related to the ZLB period are not driven by non-uncertainty shocks. This exercise is conducted to make sure that no shock which could have led to the ZLB keeps operating, possibly with bigger strength, and drives the results which we instead attribute to the presence of the ZLB. Figure A4 documents four scenarios for which we compute GIRFs by switching off one set of shocks at a time among the non-uncertainty ones. The sets refer to shocks to prices, real GDP, investment, and consumption. The results documented in Figure 4 point to the irrelevance of these non-uncertainty shocks in the computation of the GIRFs to an uncertainty shock.

Finally, Table A1 confirms that the stylized fact studied in the paper - i.e., the larger correlation between uncertainty and the growth rate of real GDP, investment, and consumption - holds true when uncertainty indicators alternative to those employed in the paper are considered.

References

Figure A1: **Time-varying GIRFs: Normal times vs. ZLB.** Uncertainty proxied by VIX. Left column: Temporal evolution of the GIRFs. Colors ranging from blue (peak values per each given history) to red (trough values per each given history).
Figure A2: **Real effects of uncertainty shocks: Role of the monetary policy stance.** Uncertainty proxied by VIX. Impulse responses to a one standard deviation uncertainty shock for selected histories differing because of different levels of the federal funds rate.
Figure A3: Proxies for financial uncertainty. VIX: Measure of implied volatility of stock market returns over the next 30 days commonly used in literature. LMN: Measure of financial uncertainty proposed by Ludvigson, Mah, and Ng (2016). The measure we consider refers to forecasts for the next month.
Figure A4: GIRFs during the ZLB: Role of non-uncertainty shocks. Comparison between GIRFs computed for the ZLB phase as in our baseline exercise and GIRFs computed by muting four non-uncertainty shocks one at a time. Muted shocks: "No Pr. shocks" refers to the case in which shocks to prices are muted; "No GDP shocks" to the case in which shocks to real GDP are muted; "No Inv. shocks" refers to the case in which shocks to real investment are muted; "No Cons. shocks" refers to the case in which shocks to consumption are muted.
<table>
<thead>
<tr>
<th>Classfic.</th>
<th>Unc. indic.</th>
<th>Period</th>
<th>$\Delta Y/Y$</th>
<th>$\Delta I/I$</th>
<th>$\Delta C/C$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Financial</td>
<td>VIX</td>
<td>Normal times</td>
<td>-0.22</td>
<td>-0.19</td>
<td>-0.23</td>
</tr>
<tr>
<td>uncertainty</td>
<td>ZLB</td>
<td></td>
<td>-0.75</td>
<td>-0.63</td>
<td>-0.79</td>
</tr>
<tr>
<td>LMN</td>
<td>Normal times</td>
<td></td>
<td>-0.29</td>
<td>-0.26</td>
<td>-0.28</td>
</tr>
<tr>
<td></td>
<td>ZLB</td>
<td></td>
<td>-0.60</td>
<td>-0.55</td>
<td>-0.67</td>
</tr>
<tr>
<td>JLN</td>
<td>Normal times</td>
<td></td>
<td>-0.46</td>
<td>-0.36</td>
<td>-0.47</td>
</tr>
<tr>
<td></td>
<td>ZLB</td>
<td></td>
<td>-0.74</td>
<td>-0.69</td>
<td>-0.75</td>
</tr>
<tr>
<td>Macroecon.</td>
<td>RS</td>
<td>Normal times</td>
<td>-0.13</td>
<td>-0.12</td>
<td>-0.11</td>
</tr>
<tr>
<td>uncertainty</td>
<td>ZLB</td>
<td></td>
<td>-0.21</td>
<td>-0.36</td>
<td>-0.11</td>
</tr>
<tr>
<td>BBD</td>
<td>Normal times</td>
<td></td>
<td>-0.17</td>
<td>-0.14</td>
<td>-0.15</td>
</tr>
<tr>
<td></td>
<td>ZLB</td>
<td></td>
<td>-0.50</td>
<td>-0.45</td>
<td>-0.33</td>
</tr>
</tbody>
</table>

Table A1: **Uncertainty-Real activity correlations: Normal times vs. ZLB.**
Real GDP, investment, and consumption considered in quarterly growth rates. Normal times: 1962Q3-2008Q3, ZLB: 2008Q4-2015Q4. Correlation coefficients conditional on the following periods: 1962Q3-2015Q4 - uncertainty proxied by the VIX, the financial uncertainty proxy estimated by Ludvigson, Ma, and Ng (2016) (LMN in the Table), the macroeconomic uncertainty proxy estimated by Jurado, Ludvigson, and Ng (2015) (JLN in the Table), and the economic policy uncertainty index built up by Baker, Bloom, and Davis (2016) (BBD in the Table); 1968Q4-2015Q1 - uncertainty proxied by the Rossi and Sekhposyan (2015) index (RS in the Table); Differences in samples due to differences in the availability of the uncertainty proxies. LMN’s and JLN’s proxies refer to an uncertainty horizon equal to one month. RS’s proxy refers to an uncertainty horizon equal to one year (revised version of the index).