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Abstract 

We develop a technique to evaluate macroeconomic connectedness in any multi-country 

macroeconomic model with an approximate VAR representation. We apply our technique to 

a large Global VAR covering 25 countries and derive vivid representations of the 

connectedness of the system. We show that the US, the Eurozone and the crude oil market 

exert a dominant influence in the global economy and that the Chinese and Brazilian 

economies are also globally significant. Recursive analysis over the period of the global 

financial crisis shows that shocks to global equity markets are rapidly and forcefully 

transmitted to real trade flows and real GDP. 

 

JEL classification: C32, C53, E17 

Keywords: Generalised Connectedness Measures (GCMs), international linkages, network 
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Globalization makes it impossible for modern societies to collapse in isolation

— Jared Diamond

1 Introduction

Globalisation is the process of increasing interdependence among entities in the global econ-

omy. In layman’s terms, the world is becoming ‘smaller’ and the distinction between national,

regional and global issues less well-defined. Established views of the benefits of globalisa-

tion in relation to openness, liberalisation and development have been challenged in light of

the Global Financial Crisis (GFC), which has drawn renewed attention to the risks posed

by aspects of financial globalisation (Mishkin, 2011). Recent research into financial con-

nectedness has reshaped our understanding of systemic linkages and has shed new light on

the identification and supervision of institutions which are ‘too big’ or ‘too connected’ to

fail (IMF, 2009). However, our understanding of international macroeconomic linkages has

not advanced to the same degree and the network structure of the global economy remains

poorly understood. We address this lacuna by developing an innovative and highly adapt-

able graph-theoretic framework to evaluate macroeconomic connectedness in a wide class of

multi-country and global macroeconomic models.

International linkages may arise through diverse channels including financial linkages,

trade linkages and relative price changes (Dees et al., 2007). We therefore consider macroeco-

nomic connectedness to be an intrinsically multi-dimensional concept. However, the existing

literature has focused almost exclusively on a single aspect of macroeconomic connectedness,

namely the apparent convergence of business cycles across countries. A degree of consen-

sus has emerged around the notion of a global business cycle which induces some common

behaviour in national business cycles (e.g. Kose et al., 2003, 2008; Hirata et al., 2013, inter

alia). Much of this research has modelled the global business cycle as a latent factor, an

approach which is attractive by virtue of its parsimony. This an important consideration

in light of the relatively short sample lengths and low sampling frequencies associated with

much macroeconomic data. Indeed, the dimensional constraint was a key motivation un-

derlying Croux et al.’s (2001) development of a synthetic measure of synchronisation across

countries/regions which is defined in the frequency domain as opposed to the time domain.
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Their ‘cohesion’ measure can be used to trace the comovement of multiple costationary time

series and its application to European sovereign and US state-level business cycles further

supports the synchronisation hypothesis.

Although Croux et al. stress that estimating VAR models may be ‘problematic when the

number of time series is large’ (p. 232), subsequent innovations in the estimation of large

multi-country VAR models — notably panel/global VAR (Pesaran et al., 2004), factor aug-

mented VAR (Bernanke et al., 2005) and large Bayesian VAR (De Mol et al., 2008) — have

relaxed this constraint. Consequently, it is now possible to estimate large macroeconometric

models in the time domain. Canova et al. (2007) were among the first to apply these tech-

niques to the analysis of business cycle convergence, estimating a Bayesian panel VAR model

which again highlights the importance of a global cycle relative to idiosyncratic effects.

In principle, a sufficiently detailed multi-country system provides a route to model the

global business cycle as an observable process defined by the interaction of the countries

comprising the model without recourse to latent factors. Consequently, sophisticated multi-

country models may provide a new perspective on the issues of globalisation and regionalisa-

tion that have emerged prominently in the existing literature, most recently in Hirata et al.

(2013). A further advantage of these sophisticated models is that, by easing the dimensional

constraint, they are able to accommodate a far greater wealth of interactions among countries

and regions than was previously possible. This opens a new avenue to study macroeconomic

connectedness in a truly multi-dimensional sense as opposed to focusing simply on business

cycle convergence.

Unfortunately, however, the development of techniques for global macroeconometric mod-

elling has yet to be met by concomitant advances in techniques for the analysis of the linkages

embedded within these models. Even as progress in the estimation of large VAR models has

mitigated the curse of dimensionality associated with the limits imposed by the range and

frequency of existing macroeconomic datasets, so it has introduced a new curse of dimension-

ality associated with one’s ability to adequately process the model output. Consequently,

the analysis of such models tends to be highly selective and does not properly illuminate the

network of linkages among variables in the system.

Significantly, unlike much of the recent literature on financial connectedness, the exist-

ing business cycle literature is largely ungrounded in network theory (Diebold and Yilmaz,
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2015). Yet network models provide a natural vehicle for the analysis of complex systems —

such as the global economy — which are composed of many interconnected entities. Our key

contribution is therefore to unite recent advances in global macroeconomic modelling with

state of the art developments in network analysis from the finance literature. Leading exam-

ples of financial network models include Billio et al. (2012) and Diebold and Yilmaz (2009,

2014; henceforth DY).1 In this literature, financial institutions are characterised as nodes

within a network. Analysing the network topology provides a means to identify systemically

important institutions and to study the propagation of shocks. Billio et al. propose the

use of a Granger causal network, while Diebold and Yilmaz develop connectedness measures

based on error variance decomposition of a vector autoregression. The DY approach has

the considerable advantage that it fully accounts for contemporaneous effects and it also

directly measures not only the direction but also the strength of linkages among nodes in

the network.

Our approach requires an innovative and non-trivial generalisation of the DY connected-

ness measures. The DY approach was originally developed to study connectedness either in

the multi-country univariate case (e.g. Diebold and Yilmaz, 2009) or in the single-country

multivariate case (e.g. Diebold and Yilmaz, 2014). To see this, note that the DY approach

operates at two extremes: complete aggregation where the m(m− 1) bilateral linkages in an

m variable model are aggregated into a single spillover index, or no aggregation where the

m(m−1) bilateral linkages are studied individually. In a multi-country model with multiple

variables per country — a setting which is typical of sophisticated global models and which

is central to our notion of multi-dimensional macroeconomic connectedness — one may wish

to analyse linkages among countries or regions rather than among individual variables.

Our solution to this issue is to introduce intermediate levels of aggregation, yielding a

framework for the construction of generalised connectedness measures (GCMs). We show

that one is free to use any desired aggregation scheme and that by defining an appropriate

aggregation scheme one may evaluate connectedness among a wide variety of entities in

1Financial network models have also been developed by simulation. Such simulations typically employ
data on bilateral exposures among financial institutions to measure the strength of pairwise connections
between nodes in the network. With this structure in place, modellers are able to simulate a credit event at a
chosen ‘trigger’ institution and then trace the subsequent propagation of the shock through the system. Such
analyses contributed significantly to our understanding of contagion during the GFC (see IMF, 2009, and
the references therein). However, this method cannot be readily generalised to the study of macroeconomic
connectedness as no uncontroversial proxy exists to measure the degree to which one country/region is
exposed to another in a general sense (Gray et al., 2013).
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the global economy. For example, by defining an aggregation scheme based on geographic

units, one is able to distill a wealth of information on the multitude of connections among

countries/regions into an easily interpreted form. Similarly, by aggregating real variables

and financial variables into separate groups, one may evaluate real–financial linkages in the

global economy. As such, our approach provides a considerably more general representation

of macroeconomic connectedness than the literature on business cycle synchronisation and it

also mitigates the processing constraints encountered with large and detailed macroeconomic

models. Consequently, we unlock the potential of such models to study macroeconomic

connectedness in unparalleled breadth and detail.

We apply our technique to an updated version of the macro-financial global VAR model

developed by Greenwood-Nimmo, Nguyen and Shin (2012, hereafter GNS) which is initially

estimated using data prior to the GFC to provide a benchmark. The model contains 169

endogenous variables covering 25 countries/regions that collectively account for the large

majority of global trade and output. We exploit the conceptual links between a country’s

macroeconomic connectedness, its dependence on (or openness to) overseas conditions and

the extent of its economic influence to draw out several key results. Firstly, our analysis

identifies the US, the Eurozone, China and Brazil as the World’s most influential economies.

Although the US acts as the principal driver of global conditions as in Diebold and Yilmaz

(2015), the emergence of regional centres is consistent with the regionalisation documented

by Hirata et al. (2013). The high degree of US influence relative to that of other economies

which have experienced crises in our sample period provides an intuitive explanation of the

global impact of the GFC compared to the local and regional effects of Black Wednesday in

the UK, the 1997 Asian financial crisis and the collapse of the Japanese bubble earlier in the

same decade.

Our analysis indicates that the countries which are most dependent on external conditions

are Canada, Singapore and Switzerland, all of which are strongly affected by conditions

within their respective free trade areas. We also show that analysing a country’s relative

dependence and influence provides an elegant summary of its role within the global economy,

ranging from small open economies at one extreme (high dependence, low influence) to large

dominant and/or closed economies at the other (high influence, low dependence). The

resulting ranking is closely consistent with that of Gwartney et al. (2013) which is based
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on a considerably broader information set including measures of freedom and institutional

quality.

Having established a pre-GFC baseline, we recursively update our estimation sample over

the GFC period. The results are striking, indicating a massive increase in total spillover ac-

tivity originating from the US financial system which coincides with the collapse of Lehman

Brothers. Further analysis shows that the original US financial shock was rapidly and

strongly passed through to foreign exchange markets and thereafter to both nominal vari-

ables and to real economic magnitudes, with real exports and imports being particularly

strongly affected. Existing research has studied each of these links separately but, to the

best our knowledge, ours is the first analysis to capture all of these links in the propagation

of the GFC simultaneously. Importantly, as of the end of our estimation sample in 2012q2,

global connectedness remains at a higher level than it was prior to the GFC. This substantial

increase in the connectedness of the global economic system raises concerns over the speed

and force with which future shocks may propagate through the global economy.

Aside from the connectedness literature, our paper is most closely related to the panel

VAR approach of Canova et al. (2007) and the dynamic factor model developed by Hirata

et al. (2013). Both of these papers distinguish between global, regional and local effects.

Canova et al. emphasise the role of a global factor influencing G7 business cycles, while

Hirata et al. stress that regional factors have come to play a prominant role since the

mid 1980s, during which time the role of global factors has diminished. These observations

furnish an a priori case for the development of new techniques such as ours which offer a

new perspective on the nature of international macroeconomic linkages.

This paper proceeds in 5 Sections. Section 2 introduces the concept of connectedness in

VAR systems and provides a detailed derivation of our GCMs. Section 3 then introduces

an updated version of the global VAR model developed by Greenwood-Nimmo et al. (2012)

which forms the basis of our empirical analysis. The results of GCM analysis of the linkages

embodied in this model are presented in Section 4, while Section 5 concludes. Further details

of the derivation and the model set-up are contained in a separate Technical Annex.
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2 Measuring Economic Connectedness

Following Diebold and Yilmaz (2009, 2014), the connectedness measures that we shall de-

velop are based on the forecast error variance decomposition (FEVD) of a p-th order vector

autoregression for the m × 1 vector of endogenous variables yt. This approach is founded

on the notion that the share of the forecast error variance (FEV) of variable i explained by

shocks to variable j provides a directional measure of the association between these vari-

ables. An appealing feature of this framework is that FEVDs are computed directly from

the estimated parameters and covariance matrix of the VAR system subject to no additional

restrictions beyond those required for estimation and identification. As such, they provide

an unadulterated reflection of the connections embedded in the model.

Abstracting from any deterministic terms, we may write the structural form of the

VAR(p) model in general notation as follows:

H0yt =

p∑
j=1

Hjyt−j + ut (1)

where H0 is the m × m contemporaneous matrix, the Hj’s are the vector autoregressive

parameter matrices and the residuals ut ∼ (0,Σu) where Σu is positive definite. The reduced

form of the model is written as:

yt =

p∑
j=1

Gjyt−j + εt (2)

where Gj = H−1
0 Hj and εt = H−1

0 ut. Throughout the derivations to follow, we remain

intentionally agnostic about the nature of the contemporaneous effects in the model. Indeed,

a key feature of the generalised connectedness measures that we develop is that they may be

derived from either the structural model (1) or the reduced form model (2) or, indeed, from

any model with an approximate VAR representation, including Dynamic Stochastic General

Equilibrium (DSGE) models in their state-space form (Giacomini, 2013). As always, one’s

choice of the underlying model will be guided by the intended application. Where one

seeks to draw structural inferences then robust identification of the structural shocks is

necessary. Meanwhile, if one’s main interest is in characterising cyclical synchronisation

and/or measuring the intensity and direction of spillover effects then a reduced form model
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will suffice. In a general sense, connectedness measures derived from reduced form models

can be viewed as dynamic directional measures of correlation.

We will proceed with the derivation based on the reduced form model (2) without loss

of generality. By Wold’s Representation Theorem, it is well established that (2) has the

following infinite order vector moving average representation:

yt =
∞∑
j=0

Bjεt−j, (3)

where the Bj’s are evaluated recursively as Bj = G1Bj−1 +G2Bj−2 + · · · +Gp−1Bj−p+1,

with B0 = Im and Bj = 0 for j < 0 such that the Bj’s are square-summable and causal.

In their original paper, Diebold and Yilmaz (2009) compute connectedness measures

based on orthogonalised FEVDs, whereby recursive identification of shocks is achieved by

Cholesky factorization with the drawback that the results are order dependent. This is

likely to be problematic in many practical applications even when working with small VAR

systems. Furthermore, the assumption of Wold causality is likely to become increasingly

untenable as the dimension of the VAR system increases. Therefore, in their subsequent

work, Diebold and Yilmaz (2014) employ order-invariant Generalised FEVDs (GFEVDs),

which may be defined following Pesaran and Shin (1998) as follows:

GFEVD (yit;ujt, h) = ϕ
(h)
i←j =

σ−1
u,jj

∑h−1
`=0

(
e′iB`H

−1
0 Σuej

)2∑h−1
`=0 e′iB`ΣεB

′
`ei

(4)

for i, j = 1, ...,m, where h = 1, 2, ... is the forecast horizon, σ−1
u,jj is the standard deviation

of the residual process of the j-th equation in the VAR system, Σε = H−1
0 ΣuH

−1′
0 and

ei (ej) is an m × 1 selection vector whose i-th element (j-th element) is unity with zeros

elsewhere. Note our use of non-standard subscript notation which will serve to highlight the

directionality of the connectedness measures in the derivations to follow. ϕ
(h)
i←j represents

the contribution of variable j to the h-step ahead FEV of variable i. Similarly, ϕ
(h)
i←i denotes

the contribution of variable i to its own h-step ahead FEV.

The interpretation of GFEVDs is complicated by the fact that the sum of the variance

shares will exceed 100% if Σε is non-diagonal. Therefore, Diebold and Yilmaz (2014) employ
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normalised GFEVDs (NGFEVDs) defined as:

φ
(h)
i←j = ϕ

(h)
i←j/

m∑
j=1

ϕ
(h)
i←j (5)

such that
∑m

j=1 φ
(h)
i←j = 1 and

∑m
i=1

(∑m
j=1 φ

(h)
i←j

)
= m. This restores a percentage interpreta-

tion to the GFEVDs. The key conceptual foundation of the DY framework is the recognition

that cross-tabulating the h-step ahead NGFEVDs for the m × 1 vector of global variables

forms a weighted directed network. The resulting m×m connectedness matrix is given by:

C(h)

(m×m)
=


φ

(h)
1←1 φ

(h)
1←2 · · · φ

(h)
1←m

φ
(h)
2←1 φ

(h)
2←2 · · · φ

(h)
1←m

...
...

. . .
...

φ
(h)
m←1 φ

(h)
m←2 · · · φ

(h)
m←m

 . (6)

Note that the elements of the i-th row of C(h) record the proportion of the h-step ahead

FEV of the i-th variable attributable to each variable in the system. The contribution of

the shock to the i-th variable itself, denoted H
(h)
i←i, is recorded by the i-th diagonal element

of C(h):

H
(h)
i←i = φ

(h)
i←i, (7)

while the off-diagonal elements of the i-th row of C(h) capture spillovers from the other

variables in the system to variable i. Specifically, the (i, j)-th element, φ
(h)
i←j, represents

the contribution to the h-step-ahead FEV of variable i from variable j 6= i. Adopting the

terminology of Diebold and Yilmaz, this is known as a from contribution because it measures

the directional connectedness to the i-th variable from variable j. By summing over j, we

may define the total spillover from the system to variable i as:

F
(h)
i←• =

m∑
j=1,j 6=i

φ
(h)
i←j, (8)

where the subscript i ← • indicates that the directional effect under scrutiny is from all

other variables to variable i. It follows that H
(h)
i←i + F

(h)
i←• =

∑m
j=1 φ

(h)
i←j = 1.

Spillovers from the i-th variable to the other variables in the system are recorded in the

i-th column of C(h). The contribution of variable i to the h-step ahead FEV of the j-th
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variable in the system is given by φ
(h)
j←i. By summing over j, we can compute the total

spillovers from variable i to the system as:

T
(h)
•←i =

m∑
j=1,j 6=i

φ
(h)
j←i. (9)

The net directional connectedness of variable i is then defined simply as:

N
(h)
•←i = T

(h)
•←i − F

(h)
i←•, (10)

such that
∑m

i=1N
(h)
•←i = 0 by construction. It is now straightforward to develop the following

aggregate (non-directional) connectedness measures for the m× 1 vector of global variables:

H(h) =
m∑
i=1

H
(h)
i←i and S(h) =

m∑
i=1

F
(h)
i←• ≡

m∑
i=1

T
(h)
•←i. (11)

We refer to H(h) and S(h) respectively as the h-step ahead aggregate heatwave and spillover

indices, respectively, a nomenclature which follows broadly in the tradition of Engle et al.

(1990) and Diebold and Yilmaz (2009).2 Note that H(h) + S(h) = m by definition.

2.1 Generalised Connectedness Measures

The DY connectedness measures are well suited to use in relatively small VAR systems.

However, their usefulness diminishes as m — the number of variables entering the VAR

system — becomes large. This is true for two reasons. Firstly, the DY approach is subject to

‘processing constraints’ which intensify sharply with m. That is, for a sufficiently large value

of m, it will become infeasible to interpret (or process) the elements of the connectedness

matrix individually. Consequently, as the system becomes larger, attention is increasingly

likely to focus only the aggregate spillover and heatwave indices for reasons of expediency.

Since the dimension of C(h) is quadratic in m, the addition of an (m + 1)th variable to the

system enlarges C(h) by 2m + 1 elements. In practice, therefore, the processing constraint

may bind for a relatively low value of m.

Secondly, consider a model with k = 1, . . . , N countries each of which is described by mk

2Diebold and Yilmaz (2009) define the spillover index as 100
[
S(h)/

(
S(h) +H(h)

)]
which measures the

relative importance of spillovers between variables in the system as a percentage of the systemwide FEV at
horizon h.
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variables such that m =
∑N

k=1mk. The DY technique is best suited to simple models where

either N = 1 or mk = 1 ∀k.3 This is true because the DY approach operates at two extremes:

(i) one may study connectedness among the m variables in the system in a disaggregated

fashion (via equations (6) to (10)); and (ii) one may study systemwide connectedness in a

wholly aggregated fashion (via equation (11)). Without modification, the DY method does

not accommodate intermediate levels of aggregation. Now consider the more general setting

in which both N > 1 and mk > 1, a setting which is typical of sophisticated multi-country

and global models. In this case, the DY approach does not provide a simple representation

of the spillover effect from country ` to country k because it is captured by m`mk elements of

C(h) rather than by a single value. A good example of this issue arises in Greenwood-Nimmo

et al. (2014), which explores the connectedness of a small Global VAR model containing two

endogenous variables for each of eight foreign exchange spot markets.

We propose a simple approach to overcome both issues based on re-normalisation and

block aggregation of the connectedness matrix. First, we re-normalise such that C(h)
R =

m−1C(h). This subtly alters the interpretation of the elements of the connectedness matrix.

Recall that the (i, j)-th element of C(h) represents the proportion of the h-step ahead FEV

of variable i explained by variable j. After re-normalisation, the (i, j)-th element of C(h)
R

represents the proportion of the total h-step ahead FEV of the system accounted for by

the spillover effect from variable j to variable i. This subtle modification ensures that we

may achieve a clear percentage interpretation even after aggregating groups of variables in

the system. This would not be the case under the DY framework where the aggregation of

variables into groups may lead to spillovers that exceed 100% (recall that the elements of

C(h) sum to m× 100%).

Our use of block aggregation exploits the fact that GFEVDs are invariant to the ordering

of the variables in yt. We may therefore re-order yt so that the variables are gathered together

into desired groups. For example, if yk,t denotes the variables that relate to country k, then

we may express yt in country order as yt =
(
y′1,t,y

′
2,t, . . . ,y

′
N,t

)′
. In this case, we may write

3Diebold and Yilmaz (2009) work with 19 equity markets where each market is represented by a single
variable: hence N = 19 and mk = 1 for k = 1, . . . , 19. Likewise, Diebold and Yilmaz (2015) study industrial
production in a group of six countries: hence, N = 6 and mk = 1 for k = 1, . . . , 6. By contrast, in their
full-sample analysis, Diebold and Yilmaz (2014) work with data for 13 financial institutions drawn from the
same market: hence, N = 1 and m1 = 13.
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C(h)
R as follows:

C(h)
R

(m×m)

= m−1



φ
(h)
1←1 · · · φ

(h)
1←m1

φ
(h)
1←m1+1 · · · φ

(h)
1←m1+m2

· · · φ
(h)
1←m

...
. . .

...
...

. . .
...

...

φ
(h)
m1←1 · · · φ

(h)
m1←m1 φ

(h)
m1←m1+1 · · · φ

(h)
m1←m1+m2

φ
(h)
m1←m

φ
(h)
m1+1←1 · · · φ

(h)
m1+1←m1

φ
(h)
m1+1←m1+1 · · · φ

(h)
m1+1←m1+m2

φ
(h)
m1+1←m

...
. . .

...
...

. . .
...

...

φ
(h)
m1+m2←1 · · · φ

(h)
m1+m2←m1

φ
(h)
m1+m2←m1+1 · · · φ

(h)
m1+m2←m1+m2

φ
(h)
m1+m2←m

...
. . .

...

φ
(h)
m←1 · · · φ

(h)
m←m1 φ

(h)
m←m1+1 · · · φ

(h)
m←m1+m2

· · · φ
(h)
m←m


(12)

The block structure of C(h)
R is easily seen. The (k, `)th block in (12), denoted B

(h)
k←`, is given

by:

B
(h)
k←`

(k×`)
= m−1


φ

(h)
m̃k+1←m̃`+1 · · · φ

(h)
m̃k+1←m̃`+m`

...
. . .

...

φ
(h)
m̃k+mk←m̃`+1 · · · φ

(h)
m̃k+mk←m̃`+m`

 (13)

for k, ` = 1, ..., N where m̃k =
∑k−1

k=1mk. While the preceding example highlights the

formation of country-level blocks, we stress that yt can be re-ordered freely to support any

desired block aggregation scheme, whether one is interested in connectedness among countries,

regions, economic blocs or other arbitrary groups of variables. Furthermore, there is no

requirement that the groups contain the same number or even a similar number of variables.

For example, in a model with a global common factor such as the oil price (e.g. Dees et al.,

2007), the factor could be treated as a separate group when evaluating connectedness among

countries and, in turn, each country could be represented by a different number of variables.

We provide several additional examples of group selection and the associated block structure

of the connectedness matrix in the Technical Annex.

Having ordered yt into b groups which define the b2 blocks consistent with one’s desired
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aggregation scheme, C(h)
R can be expressed in block form as follows:

C(h)
R

(m×m)

=


B

(h)
1←1 B

(h)
1←2 · · · B

(h)
1←b

B
(h)
2←1 B

(h)
2←2 · · · B

(h)
2←b

...
...

. . .
...

B
(h)
b←1 B

(h)
b←2 · · · B

(h)
b←b

 . (14)

No information is lost in this process but by grouping variables in this way we introduce a

new stratum between the variable level and the systemwide aggregate level at which we may

evaluate connectedness. The blocks lying on the prime diagonal of C(h)
R (i.e. the B

(h)
k←k’s)

contain all of the within-group FEV contributions. We therefore define the total within-

group FEV contribution for the k-th group as follows:

W(h)
k←k = e′mk

B
(h)
k←kemk

(15)

where emk
is an mk × 1 column vector of ones and where we employ caligraphic notation

to distinguish our GCMs defined at the group level from the Diebold-Yilmaz connectedness

measures defined at the variable level. That is, the within-group FEV contribution for the

k-th group is equal to the sum of the elements of the block B
(h)
k←k.4 By analogy, the Bk←`’s

for k 6= ` relate to the transmission of information across groups. We are therefore able to

define the spillover from group ` to group k as:

F (h)
k←` = e′mk

B
(h)
k←`em`

(16)

and the spillover to group k from group ` as:

T (h)
`←k = e′m`

B
(h)
`←kemk

. (17)

With these definitions in hand, it is straightforward to obtain the following h-step ahead

4In some cases it may be useful to decompose the within-group FEV contribution, W(h)
k←k, into the own-

variable and cross-variable FEV contributions within group k, denoted O
(h)
k←k and C

(h)
k←k respectively. Hence,

we may write W(h)
k←k = O

(h)
k←k + C

(h)
k←k where O

(h)
k←k = trace

(
B

(h)
k←k

)
and C

(h)
k←k =W(h)

k←k −O
(h)
k←k.
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group connectedness matrix:

B(h)

(b×b)
=


W(h)

1←1 F (h)
1←2 · · · F (h)

1←b

F (h)
2←1 W(h)

2←2 · · · F
(h)
2←b

...
...

. . .
...

F (h)
b←1 F (h)

b←2 · · · W(h)
b←b

 ≡

W(h)

1←1 T (h)
1←2 · · · T (h)

1←b

T (h)
2←1 W(h)

2←2 · · · T
(h)

2←b

...
...

. . .
...

T (h)
b←1 T (h)

b←2 · · · W(h)
b←b

 (18)

Note that the dimension of the group connectedness matrix is b2 < m2 which implies that

working with the group connectedness matrix can significantly ease the processing con-

straints encountered in large models. Using (18), it is straightforward to develop aggregate

connectedness measures at the group level. The total from, to and net connectedness of the

k-th group are defined as follows:

F (h)
k←• =

b∑
`=1,`6=k

F (h)
k←` , T (h)

•←k =
b∑

`=1,`6=k

T (h)
`←k and N (h)

•←k = T (h)
•←k −F

(h)
k←•, (19)

where F (h)
k←• measures the total spillover from all other groups to group k (i.e. the total from

contribution affecting group k), T (h)
•←k measures the total spillover to all other groups from

group k (i.e. the total to contribution arising from group k) andN (h)
•←k is the net connectedness

of group k. Similarly, it is possible to define the aggregate heatwave and spillover indices in

terms of the b groups as follows:

H(h) =
b∑

k=1

W(h)
k←k and S(h) =

b∑
k=1

F (h)
k←• ≡

b∑
k=1

T (h)
•←k (20)

where H(h) + S(h) = 1 and
∑b

k=1N
(h)
•←k = 0 ∀h by construction. Note that unlike the DY

heatwave and spillover measures, H(h) and S(h) measure the heatwave and spillover effects

consistent with the chosen aggregation routine.

Finally, we define a pair of indices to succinctly address two questions of particular

interest when measuring macroeconomic connectedness: (i) ‘how dependent is the k-th group

on external conditions? ’ and (ii) ‘to what extent does the k-th group influence/is the k-th

group influenced by the system as a whole? ’. These measures are especially relevant when

evaluating connectedness among geo-political units such as countries and economic blocs

within the global economy. In response to the first question, we propose the following
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dependence index :

O(h)
k =

F (h)
k←•

W(h)
k←k + F (h)

k←•

, (21)

where 0 ≤ O(h)
k ≤ 1 expresses the relative importance of external shocks for the k-th group.

Specifically, as O(h)
k → 1 then conditions in group k are dominated by external shocks while

group k is unaffected by external shocks if O(h)
k → 0. In a similar vein, we develop the

influence index :

I(h)
k =

N (h)
•←k

T (h)
•←k + F (h)

k←•

(22)

where −1 ≤ I(h)
k ≤ 1. For any horizon h, the k-th group is a net shock recipient if −1 ≤

I(h)
k < 0, a net shock transmitter if 0 < I(h)

k ≤ 1, and neither a net transmitter or recipient

if I(h)
k = 0. As such, the influence index measures the extent to which the k-th group

influences or is influenced by conditions in the system.5 When studying connectedness

among countries, the coordinate pair
(
O(h)

k , I(h)
k

)
in dependence–influence space provides

an elegant representation of country k’s role in the global system. A classic small open

economy would be located close to the point (1,−1) while, by contrast, an overwhelmingly

dominant economy would exist in the locale of (0, 1). In this way, we are able to measure the

extent to which the different economies of the world correspond to these stylised concepts.

3 The GNS Global Model

We apply our framework to an updated version of the global cointegrating VAR model devel-

oped by Greenwood-Nimmo et al. (2012) which, in turn, owes a significant intellectual debt

to Dees et al. (2007). This model provides an ideal basis for the evaluation of macroeco-

nomic connectedness as it is a large system composed of multiple countries which collectively

account for the majority of global activity. Furthermore, the model includes a range of key

macroeconomic and financial indicators relating to real output, real trade flows, price level

5In some cases, one may be interested in measuring bilateral influence between two countries, such as the
US and China. The bilateral influence index between groups k and ` can be defined analogously as follows:

I(h)`←k =
N (h)

`←k

T (h)
`←k + F (h)

k←`

which is also bounded between -1 and 1 and is interpreted in a similar manner to (22). Note that I(h)`←k =

−I(h)k←` by definition.
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inflation and the financial markets. Recall, however, that our technique can be applied to

any model with an approximate VAR representation.

Our updated model (henceforth the GNS25 model) differs from that of Greenwood-

Nimmo et al. (2012) in two respects. Firstly, the GNS25 model excludes Argentina, as this

proves necessary to ensure dynamically stable solutions once the sample period is extended to

include the crisis period. This does not significantly alter the essential features of the model.

Secondly, the global covariance matrix in the GNS25 model is estimated with greater preci-

sion. Specifically, we exclude any covariance terms which are found to be insignificant using

the cross section dependence test of Pesaran (2004). This increased precision is particularly

important because our GCMs depend upon both the parameter matrices and the covariance

matrix of the global VAR. In all other respects, the GNS25 model is identical to that of

Greenwood-Nimmo et al. (2012). We therefore limit our discussion to a concise summary of

the model, with further details in the Technical Annex.

The GNS25 model is estimated using quarterly data spanning the reference sample period

1980q2–2007q26 for the i = 1, 2, . . . , 25 economies listed in Table 1. Our dataset covers all

major economies for which reliable data are available. The 25 countries that we include

account for approximately 90% of world output and for the large majority of bilateral trade.

For each economy, i = 1, 2, . . . , 25, we estimate a country-specific VARX∗(2,2) model of the

following form:

yit = γi0 + γi1t+
2∑

j=0

δijdi,t−j +
2∑

j=1

Φijyi,t−j +
2∑

j=0

Φ∗ijy
∗
i,t−j + uit (23)

where yit is an mi × 1 vector of endogenous variables, y∗it is a corresponding m∗i × 1 vector

of weakly exogenous country-specific foreign variables defined below, dit is a country-specific

one-time permanent intercept shift term, uit is a serially uncorrelated mean-zero process with

positive definite covariance matrix Σu,ii and Greek letters represent unknown parameters to

be estimated. The country-specific structural breaks included in the GNS25 model are

detailed in Table 1.7 The inclusion of country-specific break dummies accounts for local

6This is the same sample period considered by Greenwood-Nimmo et al. (2012) and is used here to provide
benchmark results for the period prior to the GFC. As discussed below, we also estimate the GNS25 model
recursively using samples starting in 1980q2 and ending in 2005q2,. . .,2012q3.

7Where no structural break can be detected for the i-th country using the CUSUM test advanced by
Brown et al. (1975), then the i-th model is estimated excluding the break dummies.
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structural breaks which are not accommodated by co-breaking. In principle, one could model

the GFC as a global break but, instead, we elect to study it via recursive estimation which

allows the model parameters and the associated functions of these paramaters — including

our GCMs — to evolve with the sample.

— Insert Table 1 about here —

The foreign variables from the perspective of the i-th country, y∗it =
(
y∗1,it, y

∗
2,it, . . . , y

∗
m∗

i ,it

)′
,

are constructed as a weighted average of the variables from the other countries in the system

such that y∗1,it =
∑N

j=1wijy1,jt and likewise for variables 2, . . . ,m∗i . Following Dees et al.

(2007), the weights (the wij’s) are computed using bilateral trade averages over the period

1999–2001 and they satisfy
∑N

j=0wij = 1 and wii = 0.8

Unit root testing reveals that the series used in estimation are difference stationary, so

the country-specific VARX∗(2,2) models are estimated in error correction form where the

deterministic time trends are restricted to the cointegrating vectors while the intercepts and

break dummies enter the model in an unrestricted manner. The variables entering each

country-specific model are recorded in Table 1. For all countries apart from the US, the

variables are drawn from the following: the real effective exchange rate (reit), the short-term

nominal interest rate (rit), the log of real imports (imit), the log of real exports (exit), the

log of real equity prices (qit), the rate of inflation (∆pit) and the log of real output (yit).

The omission of stock market data for China, Indonesia, Peru and Turkey and the omission

of both stock market data and the short-term interest rate for Saudi Arabia is necessitated

by the lack of reliable data spanning our sample period. Furthermore, ex∗it and im∗it are

excluded from the set of weakly exogenous variables in all cases because, in a model such as

ours with considerable coverage of world trade, imit ≈ ex∗it and exit ≈ im∗it by definition.

As the dominant economy in the system, the US is modelled slightly differently. Specif-

ically, the log of the spot oil price (pot ) is treated as endogenous to the US while the Dollar

exchange rate eit is assumed to be determined in the other country-specific models in the

system and is, therefore, treated as weakly exogenous to the US.9 Furthermore, due to the

8A range of alternative weighting schemes were tested in Greenwood-Nimmo et al. (2012) and were found
to yield qualitatively and quantitatively similar results. A similar conclusion was reached by Dees et al.
(2007).

9Following Dees et al. (2007), the log real effective exchange rate is defined as reit = eeit +p∗it−pit. Note
that eeit + p∗it− pit = (eit − pit)− (e∗it − p∗it) = ẽit− ẽ∗it, where eit is the nominal exchange rate vis-à-vis the
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dominance of the US in the world economy, r∗1t and q∗1t are likely to respond to conditions

in the US, violating the assumption of their weak exogeneity — both are therefore excluded

from the US model.

The country-specific VARX∗ models, (23), may be expressed compactly as:

Ai0zit = γi0 + γi1t+
2∑

j=0

δijdi,t−j +
2∑

j=1

Aijzi,t−j + uit (24)

where zit = (yit,y
∗
it)
′, Ai0 = (Imi

,−Φ∗i0) and where Aij =
(
Φij,Φ

∗
ij

)
for j = 1, ..., p. Next,

we may define zit = W iyt where yt =
(
y′1,t, ...,y

′
25,t

)′
and W i denotes the (mi +m∗i ) ×m

‘link matrix’ with m =
∑25

i=1mi. Note that the link matrix for the i-th country contains the

bilateral trade weights used to construct the foreign variables that enter the i-th country-

specific model. In light of this linking structure between zit and yt, the country-specific

VARX∗(2,2) models in (24) may be stacked to yield:

H0yt = γ0 + γ1t+
2∑

j=0

δijdi,t−j +
2∑

j=1

Hjyt−j + ut (25)

where:

γ0 =


γ1,0

...

γ25,0

 , γ1 =


γ1,1

...

γ25,1

 , ut =


u1t

...

u25t

 and Hj =


A1jW 1

...

A25jW 25


for j = 1, . . . , p, from which the final reduced-form global VAR(2,2) model can be retrieved

as:

yt = g0 + g1t+
2∑

j=0

δijdi,t−j +
2∑

j=1

Gjyt−j + εt (26)

where g0 = H−1
0 γ0, g1 = H−1

0 γ1 and Gj = H−1
0 Hj, j = 1, ..., p, denotes the set of m×m

global VAR coefficient matrices. As usual, εt = H−1
0 ut where εt ∼ (0,Σε). Since the

global VAR model is just a large VAR, it is straightforward to invert (26) into its Wold

US$, e∗it =
∑N

j=0 wijejt, eeit =
∑N

j=0 wijeijt is the nominal effective exchange rate, pit the national price
level and p∗it the foreign price level. Hence, we actually model the US price level rather than US inflation
and we carefully account for this fact when stacking the country-specific VARX∗(2,2) models into the global
VAR(2,2) model. See the Technical Annex, Greenwood-Nimmo et al. (2012) and Dees et al. (2007) for a
detailed discussion.
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representation, from which the computation of generalised connectedness measures follows

easily from Section 2 above.

The covariance matrix is central to the computation of FEVDs and so its accurate es-

timation is essential. Note that the residual covariance matrices from equations (25) and

(26) — Σu and Σε, respectively — are explicitly related according to Σε = H−1
0 ΣuH

−1′
0 .

We elect to focus on Σu, which contains the original contemporaneous correlation structure

among shocks across countries and is free from the influence of the estimated parameters

in the contemporaneous matrix, H0. In the global VAR literature, Σu is usually estimated

non-parametrically as Σ̂u = ûtû
′
t, where ût =

(
û′1t, û

′
2t, . . . , û

′
25t

)′
. Recall from Table 1

that the country-specific VARX∗ models differ both in terms of their cointegrating rank and

also in terms of the domestic and foreign variables that they include. As such, the differ-

ent country-specific models may contain different numbers of regressors. Consequently, ûit

and ûjt for i 6= j, may be estimated with different degrees of freedom and the established

method of computing Σ̂u may yield imprecise estimates. Furthermore, the estimation of the

off-diagonal (cross-country) blocks of Σ̂u may be refined by formally testing for cross sec-

tion dependence or by employing related techniques for the sparse estimation of covariance

matrices (Bien and Tibshirani, 2011).

We adopt a simple two-step technique to estimate the global covariance matrix more

accurately. Firstly, the prime diagonal (within-country) blocks of Σu are estimated as Σ̂u,ii =

(ûitû
′
it)/(T − ni) where ni is the number of regressors in the i-th country-specific VARX∗

model. Note that Σ̂u,ii is simply the usual consistent estimator of the covariance matrix of

the i-th country-specific VARX∗ model. Secondly, we carry out the cross section dependence

(CD) test proposed by Pesaran (2004) for each of the off-diagonal blocks of Σu. Under the

null hypothesis, ûit and ûjt for i 6= j are cross sectionally independent and the CD test

statistic follows an asymptotic standard normal distribution. Results of the cross section

dependence test can be found in the Technical Annex. Where the null hypothesis of cross

section independence is not rejected at the 5% significance level, we impose a null block in Σu.

Where the null hypothesis of cross section independence is rejected, we estimate the block

as Σ̂u,ij = (ûitû
′
jt)/(T −

√
ninj) where ni and nj are the number of regressors in the country-

specific models for countries i and j, respectively. Consequently, our procedure yields an

estimated global covariance matrix which is correctly adjusted for degrees of freedom and
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which accurately accounts for cross section dependence.

4 Measuring Global Connectedness

4.1 Economic Connectedness Prior to the GFC

The first step in our analysis is to select an appropriate forecast horizon. Existing appli-

cations of the DY methodology have mostly considered financial spillovers using daily or

weekly data and correspondingly short forecast horizons. The only exception of which we

are aware is Diebold and Yilmaz (2015), who work with a 12 month horizon and demonstrate

robustness over 6 and 18 months horizons. Therefore, in the absence of a clear precedent, we

start by studying the variation in country-level connectedness over horizons h = 1, 2, . . . , 12

quarters, as recorded in Figure 1. In the subfigure for the j-th country, the upper panel

plots the to contribution (T (h)
•←j) as a red line and the from contribution (F (h)

j←•) as a blue

line. The net connectedness (N (h)
•←j) is shown by the shaded region: red shading indicates a

net transmitter at horizon h while blue shading indicates a net recipient. Meanwhile, the

bars in the lower panel report the within country connectedness (W(h)
j←j) across horizons. By

virtue of the re-normalisation procedure discussed above, all of the values reported in Figure

1 are percentages of the total systemwide FEV at each horizon.

— Insert Figure 1 about here —

In the large majority of cases, the net connectedness of the k-th economy does not

change sign over the forecast horizon. This suggests that the choice of forecast horizon is

unlikely to exert a decisive influence on our results. The only notable exception is Japan,

which is a significant net transmitter until h = 3, whereupon it becomes a net recipient.

Closer inspection reveals that the influence of Japanese shocks rapidly diminishes, both

domestically (measured by the within contribution) and externally (measured by the to

contribution). Meanwhile, as a result of Japan’s openness, the effect of external shocks on

the Japanese economy (the from contribution) rapidly intensifies and becomes the dominant

influence on domestic economic conditions. This is in constrast to the full sample results of

Diebold and Yilmaz (2015), which indicate that Japanese shocks exert a dominant influence

on the system with the to connectedness of Japan being almost twice as large as that of
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the US. However, their results are not directly comparable to ours as their model focuses

solely on industrial production without any financial variables and with no Asian economies

other than Japan. Our results are closer to those of Stock and Watson (2005), who report

a reduction in the association between Japanese business cycle fluctuations and those of the

remaining G7 economies during the 1990s.

Two further general patterns are noteworthy. First, within effects tend to recede while

from contributions grow with the forecast horizon. The same effect is discussed by Diebold

and Yilmaz (2015, pp. 7-8). The observation that spillovers intensify over time suggests that

the international transmission of shocks occurs gradually. Second, outward (to) spillovers

arising from the dominant units in the global system — notably the US, the Eurozone and the

oil price — tend to strengthen over the forecast horizon. This increase is rapid in the case of

the US, with its to contribution rising from 5.99% at h = 1 to 12.83% at h = 8. Meanwhile,

outward spillovers from the Eurozone increase gradually over the forecast horizon, from

4.86% at h = 1 to 7.77% at h = 12. In most cases, however, the connectedness measures

plotted in Figure 1 converge to their long-run value after 3–5 quarters. In light of these

considerations, we elect to focus henceforth on the four-quarters-ahead forecasting horizon.

Table 2 records the within, from, to and net connectedness among countries in the system

at the four-quarters-ahead horizon measured as a percentage of the systemwide FEV. The two

rightmost columns of Table 2 report the dependence and influence indices, respectively. To

further test the robustness of our results to alternative choices of the forecast horizon, Table 3

records the range of values that are obtained for each of the connectedness measures reported

in Table 2 using forecast horizons in the interval h = 1, 2, . . . , 12. In the large majority of

cases, the range of possible values is rather narrow, confirming that our results do not depend

crucially on the selection of h = 4. Furthermore, the connectedness measures evaluated at

h = 4 typically lie toward the centre of the interval reported in Table 3, indicating that

results based on h = 4 are representative of the general pattern of connectedness across

horizons.

— Insert Tables 2 and 3 about here —

Continuing with the case of h = 4, several stylised results emerge from Table 2. Firstly,

the importance of within-country (domestic) information provides an indirect indication

of relative economic openness. Large within-country effects are indicative of less open
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economies, where domestic conditions are strongly influenced by local factors but are some-

what insulated from global conditions. Many of emerging economies in our sample exhibit

large within-country effects — at h = 4, the largest within values are recorded by China

(2.31%) and Brazil (2.29%), which compares to a corresponding average within-country ef-

fect of just 1.68%. Meanwhile, weak within-country effects are predominantly associated

with small open economies, especially those that belong to significant free trade areas such

as EFTA, ASEAN and NAFTA. Notable examples from these areas include Switzerland

(0.80%), Malaysia (1.22%) and Canada (1.25%). This reflects the importance of regional

factors documented by Hirata et al. (2013) inter alia.

The dependence index (21) provides a more complete picture of economic openness as

it combines the within and from connectedness information for each country to provide a

simple metric suitable for ranking exercises. This reveals that the most open economies in

our sample are Switzerland (0.81), Japan (0.73) and Malaysia (0.71) while the least open

are China (0.35), Turkey (0.42) and Brazil (0.45).10 The resulting ranking derived from our

model is generally consistent with established beliefs about economic openess. Since our

network-based dependence index is considerably more general than standard measures of

trade openness, we evaluate it relative to one of the broadest measures of economic freedom

to be found in the literature. Gwartney et al. (2013) compute a ranking of economic freedom

which encompasses the size of government, the legal system and property rights, measures

relating to inflation and the exchange rate, trade freedom and various aspects of regulation.

We conjecture that the extent to which an economy integrates within the global economic

system is likely to be positively related to the quality of its institutions and the degree to

which it protects the rights of its citizens and firms. This appears to be the case, as the

correlation between our dependence index and Gwartney et al.’s summary index of economic

freedom is strongly positive, at 0.52.11

10Saudi Arabia records the lowest within-country effect in our sample as well as the fourth highest depen-
dence index. However, these results are likely to overstate the external dependence of the Saudi economy
as its dominant role within OPEC is not fully reflected within our model because the oil price is modelled
separately as a global common factor.

11We compare our dependence index against the mean value of Gwartney et al.’s summary index in the
years 1990, 1995, 2000, 2005 and 2010. Note that we use Gwartney et al.’s reported values for Germany to
proxy for the Eurozone since the authors do not provide values for the Eurozone as a region but only for
its constituent states. Furthermore, for Saudi Arabia we use the value of Gwartney et al.’s overall freedom
index for 2010 since this is the earliest period for which they provide data.
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Figure 2(a) shows the dependence indices overlayed on a political map. As one may

expect, the developed and/or trade-oriented economies of Europe, Asia and Australasia stand

out as the most externally dependent, while less developed and less liberal economies record

lower dependence scores. The USA stands out as a noteworthy special case, as it achieves

a lower dependence score than many other developed countries. This reflects the dominant

role of the US in the world economy. Not only does the US drive conditions overseas but

also domestically, resulting in a strong within effect (1.86%) and a correspondingly weaker

from contribution (1.69%).

— Insert Figure 2 about here —

The leading role of the US economy is manifestly clear in Table 2, which reveals that

spillovers from the US to the world economy account for 10.57% of all of the four-quarters-

ahead forecast error variance of the system. This represents a considerably stronger spillover

effect than any other observed in the model — the next largest values are recorded by the

Eurozone (6.13%) and the oil price (3.56%). In fact, the average to connectedness recorded by

all countries in the system excluding the US is just 1.82%. This is a striking illustration of US

economic dominance. Continuing in a similar vein, note the large positive net connectedness

of the US, the Eurozone and the oil price. Net outward spillovers from these three sources

alone account for 15.74% of systemwide FEV at h = 4. China and Brazil are the only other

economies which exert net outward spillover effects at h = 4, reflecting their importance

within the global economy.

The influence index (22) is recorded in the rightmost column of Table 2 and is mapped

onto the globe in Figure 2(b). Economic influence measured in this way aligns closely with

common perceptions of geo-political influence and with economic mass in particular. Figure

2(b) also provides a simple means of assessing the risks to the global economy posed by shocks

occuring in different states. Given its influence, shocks to the US are globally significant, as

highlighted by the rapid and forceful transmission of the subprime crisis around the world

(Mishkin, 2011; Bagliano and Morana, 2012). Similarly, shocks to the Eurozone and to the

market for oil will have considerable global impact. This is also becoming increasingly true

of the BRICs, particularly China which has emerged as a major global power during our

sample period. The figure also offers an explanation of why some regional crises have not

translated into global crises. For example, Japan does not exhibit strong external spillover
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effects and thus the Japanese real-estate and stock-market collapse was not strongly felt

outside Asia. Likewise, Black Wednesday in the UK and the 1997 Asian financial crisis were

not strongly propagated beyond their respective regions.

Finally, Figure 3(a) records the location of each country in dependence–influence space

in order to empirically measure the extent to which each economy can be viewed as small

and open on the one hand (lying below the 45o line) or large, dominant and/or closed on

the other hand (above the 45o line). The closer that country k lies to the limiting point

(Ok = 0, Ik = 1), the more influential it is and, consequently, the less exposed it is to

overseas conditions. The US and China are closest to this point, with the US being more

influential but China less dependent on external conditions. Brazil and the EU are also

classed as dominant economies, with the EU being very much the most externally dependent

among this group. This may reflect the strong spillovers from the US to Europe that have

been documented elsewhere in the literature (Eickmeier, 2007). Meanwhile, proximity to

the limiting point (Ok = 1, Ik = −1) indicates the extent to which an economy corresponds

to the stylised small open economy which is fundamental to much macroeconomic research.

Canada and Switzerland are closest to this point, which is an intuitively pleasing result

and which supports the widespread use of Canada as the classic example of a small open

economy. We shall return to Figure 3(b) shortly.

— Insert Figure 3 about here —

4.2 Economic Connectedness and the GFC

It has been argued in the global business cycle literature that a sufficiently large shock hitting

one economy is likely to spillover to others, resulting in increased business cycle correlation

across countries (Doyle and Faust, 2005). Therefore, a large shock — such as the GFC — is

likely to influence the observed pattern of macroeconomic connectedness in our framework.

By observing the evolution of our GCMs in the wake of the GFC we can analyse how the crisis

propagated through the global economy. To this end, we re-estimate the model recursively

using 30 samples starting in 1980q2 and ending in 2005q2, . . . ,2012q3.12

12Note that we retain the same structure of the covariance matrix as employed above throughout our
recursive analysis. Specifically, we test for cross section dependence using the reference sample 1980q2–
2007q2 and impose null off-diagonal blocks in Σu where the null hypothesis of cross section independence
cannot be rejected, as described in Section 3. We then retain this pattern of restrictions when estimating the
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Figure 4 records the variation in the four-quarters ahead aggregate spillover index over

the 30 recursive samples under three different aggregation schemes — (i) no aggregation,

where the spillover index is computed directly from the 169× 169 connectedness matrix; (ii)

aggregation into 25 countries/regions as in the preceding section; and (iii) aggregation into

8 groups of common variables, such that the 25 GDP series are gathered into one group, the

25 export series into another group and so on, with the oil price being treated separately

as a global common factor.13 The GFC is associated with a marked increase in spillover

activity under each of the three aggregation schemes, although it is most pronounced among

countries where spillovers account for almost 67.17% of the systemwide FEV in late 2008

compared to 57.60% prior to the GFC.

— Insert Figure 4 about here —

Figure 5 records the time-variation in country connectedness at the four-quarters-ahead

horizon while Table 4 recreates the analysis in Table 2 for the recursive sample ending in

2008q4, a date which corresponds to the height of the crisis following the collapse of Lehman

Brothers. Comparing the two tables reveals that country-specific idiosyncratic effects are

much smaller on average in the crisis period (1.26% vs. 1.63% before the GFC) while spillovers

intensify markedly. Figure 5 demonstrates that this increase in spillover activity is driven

by increased spillovers from the US to the system, reflecting the GFC’s roots in the US

subprime crisis (Mishkin, 2011). Outward (to) spillovers from the US jump from 10.57%

prior to the GFC to 17.27% at the height of the GFC, while its net connectedness increases

by a factor of more than two-thirds from 8.87% to 15.37%.

The majority of countries in the sample show a noticeable increase in their from (inward)

connectedness during the GFC, as they receive the shock emanating from the US. This is

particularly evident for Brazil and China, the net connectedness of which falls considerably

during the GFC. Interestingly, Japan and, to a lesser extent, the UK and Singapore exhibit

strengthening outward spillovers in the wake of the shock, albeit with a modest lag. Each of

these countries hosts a significant financial hub, which is suggestive of the key role played by

covariance matrices for all of the recursive samples. This ensures that our results remain comparable across
recursive samples and avoids possible distortions arising from changes in the structure of the covariance
matrix.

13The figures also report intervals which record the range of values that the spillover index takes in each
recursive sample over horizons 1 to 12. As in the reference sample 1980q2–2007q2, in each case the range of
possible values is relatively narrow and our results using h = 4 lie toward its center.
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the financial markets in the propagation of the GFC. Japan is particularly noteworthy, as it

switches from being a net recipient of shocks prior to the GFC to a modest net transmitter.

The particular behaviour of Japan at this time may be rooted in the robustness of its

financial services sector. Chor and Manova (2012) show that credit conditions represent a

key channel by which the GFC was transmitted to real magnitudes and to trade flows in

particular. Their analysis reveals that interbank lending rates in Japan remained remarkably

stable throughout the GFC, quite unlike the experience of other major economies.

— Insert Figure 5 and Table 4 about here —

Given our definition of dependence, the massive increase in spillovers from the world’s

dominant economy is reflected in increased dependence of most other countries. The average

dependence index increases from 0.58 prior to the GFC to 0.67, indicating much greater

sensitivity to external conditions during the crisis than in previous periods. This is a natural

result in the context of contagion where shocks spread forcefully across national borders. This

effect can be seen very clearly in Figure 3(b), which reproduces the analysis in Figure 3(a) for

selected major economies. As the source of the shock, the US behaves quite differently than

any other economy, being the only country to record a significant increase in influence while

all others record a marked increase in dependence, often coupled with reduced influence.

As a final exercise, we switch our frame of reference away from geographical units and

focus instead on spillovers among different classes of variables in the system. As with the

rightmost panel of Figure 4, Figure 6 is computed by aggregating the connectedness matrix

C(h) into 82 blocks corresponding to 8 groups: one for the oil price and another for each of

the variables in the model (the stock index, exchange rate and so on). The standout feature

of Figure 6 is the sharp increase in outward spillovers from global stock markets to the rest

of the system, which jumps from 8.57% prior to the GFC to 13.46% at the height of the

crisis. No other variable group records such a sharp rise in outward spillover activity, which

highlights the central role played by financial markets in the propagation of the GFC.

— Insert Figure 6 about here —

The behaviour of real imports and exports shown in Figure 6 suggests that the volatility

in the financial markets rapidly and forcefully spilled over into global trade, as previously
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documented by Chor and Manova (2012) and discussed by Diebold and Yilmaz (2015). To

illustrate this effect more clearly, Figure 7 reports the bilateral connectedness between the

stock markets and the 7 remaining variable groups. The impact of financial shocks associated

with the GFC on both trade flows and real activity is striking, with a large and sustained

increase in spillover activity. This result contributes to the important debate over the linkage

between financial and real variables, where notable contributions have been made both in

favour of a strong linkage (Blanchard et al., 2010) and against such a linkage (Claessens et

al., 2012).

— Insert Figure 7 about here —

Figure 7 also reveals a significant short-lived spike in spillovers from global stock markets

to the foreign exchange markets. This illustrates the widespread flight-to-quality instigated

by the GFC, in which investors rebalanced their portfolios to favour the safer investment

opportunities offered by fixed income markets over the riskier environment afforded by a

volatile stock market in the early days of the crisis (Caballero and Krishnamurthy, 2008).

The resulting money flows have been identified as a key factor driving significant exchange

rate movements, particularly the strong appreciation of high yielding currencies including

the Australian Dollar. This provides an excellent illustration of the value of studying global

macroeconomic connectedness. An improved ability to model and potentially to predict such

spillover effects would have been invaluable during the GFC, where many countries including

Switzerland and Japan were obliged to intervene in foreign exchange markets in an effort to

control the value of their currencies and, thereby, to mitigate the real impact of the crisis.

5 Concluding Remarks

We develop a technique to measure macroeconomic connectedness in the global economy.

Our framework is an innovative and powerful generalisation of that developed by Diebold

and Yilmaz (2009, 2014) for the study of financial connectedness. Our principal innovation

is to introduce a new stratum between the level of individual variables and the level of

systemwide aggregates which allows us to measure connectedness between countries, regions

or any arbitrary group of variables within the model. Our approach is therefore well suited to

28



the analysis of sophisticated global models, where multiple variables for each of a potentially

large number of countries are modelled simultaneously.

Our method provides a means to distill the wealth of information contained in such

sophisticated models into a readily interpreted form, thereby mitigating the processing con-

straints typically encountered when working with large models. Furthermore, our approach

is accessible to non-specialists as it provides a stylised representation of macroeconomic con-

nectedness, the interpretation of which is intuitive and does not require advanced knowledge

of economic modelling techniques. Finally, our framework is highly adaptable. It can be

applied to any model with an approximate VAR representation, including DSGE models in

their state-space form (Giacomini, 2013). It is also not reliant on the imposition of identifying

restrictions although, equally, it does not preclude them (Diebold and Yilmaz, 2015).

We apply our technique to a large global VAR model based on Dees et al. (2007) and

Greenwood-Nimmo et al. (2012) and derive a vivid representation of the connectedness of the

global system. We uncover strong spillovers between countries and regions and find that, in

many cases, idiosyncratic country-specific factors are not the main force influencing domestic

conditions. The majority of spillovers originate from a small cohort of large and dominant

states — the US, the Eurozone, China and Brazil — as well as the crude oil market. Shocks

within this group are of global significance. By contrast, shocks to other economies may not

be strongly transmitted beyond their respective locales. This offers a simple explanation of

why the GFC, rooted as it was in the US economy, was so much more damaging to global

prosperity than Black Wednesday in the UK, the 1997 Asian financial crisis and the collapse

of the Japanese bubble earlier in the same decade.

Based on estimation over a recursively expanding sample, we gain additional insights

into the propagation of the GFC from its origins in the US financial markets. Our analysis

captures the initial flight-to-quality of equity investors in favour of foreign exchange. We

also observe the subsequent transmission of the shock from the global financial markets to

real activity, with a particularly marked effect on global trade flows. Existing research has

studied each of these links separately but, to the best our knowledge, ours is the first analysis

to capture all of these links in the propagation of the GFC simultaneously.

A number of implications arise from our analysis, two of which we wish to highlight.

Firstly, our results reveal profound spillovers from financial markets to real activity, not
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only during the GFC but also prior to it. This has implications for the ‘lean’ versus ‘clean’

debate, as it is not just the burst of asset bubbles that may affect the real economy but also

their inflation. Secondly, the world economy is characterised by heterogeneity. Countries

play different roles in the global system, being either dominant units or recipients. However,

heterogeneity persists even within these groups, as the US and China are mutually dissimilar

and are unlike other dominant units, while recipients differ in a number of ways including

their openness and the extent and nature of their regional linkages. Accommodating this

heterogeneity in stylised macroeconomic models poses a significant challenge but will yield

major gains in the degree to which such models approximate reality.

We conclude by returning to our opening quote, which promotes a simple but widely

held view of globalisation in which domestic shocks are not contained by national bound-

aries but may spread rapidly and forcefully within the global economy. Our results partially

validate this view subject to an important caveat — connectedness matters and connected-

ness is asymmetric. Hence, a more accurate statement would be that globalisation makes it

impossible for dominant economies to collapse in isolation.
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Within From To Net Open. Infl.
Oil 0.34 0.25 3.56 3.31 0.43 0.87
United States 1.86 1.69 10.57 8.87 0.48 0.72
Eurozone 1.57 2.57 6.13 3.56 0.62 0.41
Japan 1.13 3.02 2.56 -0.46 0.73 -0.08
United Kingdom 1.81 2.33 1.78 -0.55 0.56 -0.13
Norway 1.44 2.70 1.26 -1.44 0.65 -0.37
Sweden 1.38 2.76 2.34 -0.42 0.67 -0.08
Switzerland 0.80 3.34 2.40 -0.94 0.81 -0.16
Canada 1.25 2.89 1.25 -1.64 0.70 -0.40
Australia 2.06 2.08 1.24 -0.84 0.50 -0.25
New Zealand 2.06 2.08 0.50 -1.58 0.50 -0.61
South Africa 2.17 1.97 1.71 -0.26 0.48 -0.07
Brazil 2.29 1.86 3.79 1.93 0.45 0.34
Chile 2.27 1.87 1.08 -0.79 0.45 -0.27
Mexico 1.90 2.24 1.34 -0.90 0.54 -0.25
India 2.13 2.02 0.79 -1.22 0.49 -0.43
South Korea 1.55 2.59 1.68 -0.90 0.63 -0.21
Malaysia 1.21 2.93 1.53 -1.40 0.71 -0.31
Philippines 2.02 2.12 1.57 -0.55 0.51 -0.15
Singapore 1.34 2.81 2.43 -0.38 0.68 -0.07
Thailand 1.77 2.37 1.24 -1.12 0.57 -0.31
China 2.31 1.24 2.31 1.07 0.35 0.30
Indonesia 1.31 2.24 1.65 -0.59 0.63 -0.15
Peru 1.49 2.06 0.77 -1.29 0.58 -0.45
Turkey 2.07 1.48 0.55 -0.93 0.42 -0.46
Saudi Arabia 0.88 2.08 1.56 -0.52 0.70 -0.14

Average 1.63 2.21 2.21 0.00 0.57 -0.11
Average (excl. oil) 1.68 2.29 2.16 -0.13 0.58 -0.14

Note: The values of within, from, to and net are computed following equations (15) and
(19). The unit of measurement for each of these four quantities is the percentage of the total
h-step ahead forecast error variance of the system. Open. denotes the openness index, Oh

k ,
which is defined in equation (21). Note that 0 ≤ Oh

k ≤ 1 where higher values denote greater
sensitivity to overseas conditions, which indicates greater economic openness. Infl. denotes
the influence index, Ihk , which is computed following equation (22). Recall that −1 ≤ Ihk ≤ 1
and that country k is a net recipient at horizon h if −1 ≤ Ihk < 0 and a net shock transmitter
if 0 < Ihk ≤ 1.

Table 2: Connectedness Among Countries, Four-Quarters Ahead
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Within From To Net Open. Infl.
Oil 0.13 0.46 2.89 2.43 0.77 0.73
United States 1.65 1.90 17.27 15.37 0.54 0.80
Eurozone 1.08 3.06 6.44 3.38 0.74 0.36
Japan 0.64 3.50 2.98 -0.52 0.85 -0.08
United Kingdom 1.55 2.59 2.00 -0.59 0.63 -0.13
Norway 1.21 2.93 1.60 -1.34 0.71 -0.30
Sweden 1.00 3.14 1.83 -1.31 0.76 -0.26
Switzerland 0.66 3.48 2.67 -0.81 0.84 -0.13
Canada 0.92 3.22 1.34 -1.88 0.78 -0.41
Australia 1.64 2.51 1.11 -1.40 0.61 -0.39
New Zealand 1.51 2.63 0.45 -2.18 0.64 -0.71
South Africa 1.71 2.43 2.25 -0.19 0.59 -0.04
Brazil 2.13 2.02 3.17 1.15 0.49 0.22
Chile 1.67 2.47 1.03 -1.44 0.60 -0.41
Mexico 1.41 2.73 1.58 -1.15 0.66 -0.27
India 1.59 2.55 0.76 -1.79 0.62 -0.54
South Korea 1.53 2.61 2.17 -0.43 0.63 -0.09
Malaysia 0.82 3.32 1.75 -1.57 0.80 -0.31
Philippines 1.51 2.63 1.65 -0.98 0.64 -0.23
Singapore 0.78 3.37 3.17 -0.19 0.81 -0.03
Thailand 1.02 3.12 1.84 -1.29 0.75 -0.26
China 1.87 1.68 2.30 0.62 0.47 0.16
Indonesia 1.16 2.39 1.87 -0.52 0.67 -0.12
Peru 1.25 2.30 0.68 -1.61 0.65 -0.54
Turkey 1.58 1.97 0.49 -1.48 0.55 -0.60
Saudi Arabia 0.80 2.16 1.88 -0.27 0.73 -0.07

Average 1.26 2.58 2.58 0.00 0.67 -0.14
Average (excl. oil) 1.31 2.67 2.57 -0.10 0.67 -0.18

Note: The values of within, from, to and net are computed following equations (15) and
(19). The unit of measurement for each of these four quantities is the percentage of the total
h-step ahead forecast error variance of the system. Open. denotes the openness index, Oh

k ,
which is defined in equation (21). Note that 0 ≤ Oh

k ≤ 1 where higher values denote greater
sensitivity to overseas conditions, which indicates greater economic openness. Infl. denotes
the influence index, Ihk , which is computed following equation (22). Recall that −1 ≤ Ihk ≤ 1
and that country k is a net recipient at horizon h if −1 ≤ Ihk < 0 and a net shock transmitter
if 0 < Ihk ≤ 1.

Table 4: Connectedness Among Countries, Four-Quarters Ahead at 2009q4
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Note: The values of within, from, to and net are computed following equations (15) and (19). In all
cases, the unit of measurement is the percentage of the total h-step ahead forecast error variance of the
system. Note the difference in the scaling of the vertical axes for the US and the Eurozone relative to
the other cases.

Figure 1: Connectedness Among Countries
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(a) Countries of the World by Openness

(b) Countries of the World by Influence

Note: The openness index, Oh
k , is computed following equation (21). Recall that 0 ≤ Oh

k ≤ 1 and that
a higher value indicates greater openness to external conditions. The influence index, Ihk , is computed
following equation (22). Country k is a net recipient at horizon h if −1 ≤ Ihk < 0 and a net shock
transmitter if 0 < Ihk ≤ 1. The entirety of the Eurozone is shaded for visual clarity but recall that the
Eurozone economy in our model is comprised of the eight member states listed in the notes to Table 1.

Figure 2: Openness Indices by Country, Four-Quarters-Ahead
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(a) All Countries, 1980q2–2007q2 (b) Change by 2009q4, Selected Countries

Note: Panel (a) records the openness and influence indices for each country over the reference sample period
1980q2–2007q2. Panel (b) records change in influence and openness for seven selected economies between the
reference sample (shown in blue) and the sample 1980q2–2009q4 which includes the onset of the GFC (shown
in red). Influence and openess are measured following equations (22) and (21). All figures are computed using
the four-quarters ahead forecast horizon. The red 45o line is provided as an aid to visualisation.

Figure 3: Influence vs. Openness, Four-Quarters Ahead

Note: The aggregate spillover among variables (the left panel) is computed following equation (11).
The aggregate spillovers among countries (middle panel) and variable groups (right panel) are computed
following equation (20) subject to the appropriate block structure of Bh. In each case, the interval reports
the range of values taken by the spillover index over horizons 1 to 12 in a similar manner to the values
reported in Table 3. Note that the time axis records the end of the recursive sample period so that
values shown at 2009q4, for example, are derived from the estimation sample 1980q2–2009q4. In all
cases, the unit of measurement is the percentage of the total h-step ahead forecast error variance of the
system.

Figure 4: Time-Varying Aggregate Spillover Indices, Four-Quarters Ahead
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Note: The values of from, to and net are computed following equation (19). In all cases, the unit of
measurement is the percentage of the total four-quarters-ahead forecast error variance of the system.
Note the difference in the scaling of the vertical axes for the US and the Eurozone relative to the other
cases.

Figure 5: Time-Varying Connectedness Among Countries, Four-Quarters-Ahead
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Note: The values of from, to and net are computed following equation (19). In all cases,
the unit of measurement is the percentage of the total four-quarters-ahead FEV of the
system.

Figure 6: Time-Varying Connectedness Among Variable-Groups, Four-Quarters-Ahead

Note: The values of from, to and net are computed following equation (19). In all cases,
the unit of measurement is the percentage of the total four-quarters-ahead FEV of the
system.

Figure 7: Time-Varying Bilateral Connectedness of the Stock Index, Four-Quarters-Ahead
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Technical Annex

A.1 Introduction

This Annex provides supplementary information for Measuring the Connectedness of the Global

Economy by Matthew Greenwood-Nimmo, Viet Hoang Nguyen and Yongcheol Shin. It proceeds

in four sections. Section A.2 outlines the specification of the GNS25 model, which is an updated

version of the GVAR model analysed by Greenwood-Nimmo et al. (2012). Detailed notes on the

construction of the GVAR link matrices using bilateral trade data are also provided. Section A.3

provides further details on the aggregation schemes used in the paper to evaluate connectedness

among countries and groups of common variables. Section A.4 provides a detailed description

of the construction of the dataset including a comprehensive list of data sources and full details

of the transformations that have been applied to the data.

A.2 The GNS Global Model

Greenwood-Nimmo, Nguyen and Shin (2012, GNS) develop a global VAR model consisting of

26 countries with a total of 176 variables. In the current paper, we employ an updated version

of this model (henceforth the GNS25 model) which differs from the original in two respects:

(i) The GNS25 model excludes Argentina, as this proves necessary to ensure dynamically

stable solutions once the sample period is extended to include the crisis period. The

stability issues encountered in the original 26 country model seem to be rooted in the

unstable time series behaviour of the Argentine inflation, interest rate and equity price

data, which may experience multiple structural breaks during our sample period.

(ii) The global covariance matrix in the GNS25 model is estimated with greater precision by

excluding any covariance terms which are found to be insignificant using the weak cross

section dependence test of Pesaran (2004).

In all other respects, the GNS25 model is identical to that of Greenwood-Nimmo et al. (2012).

As such, the GNS25 model contains 169 endogenous variables covering 25 countries/regions that

collectively account for the large majority of global trade and output. The 25 countries are (1)
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USA; (2) Eurozone; (3) Japan; (4) UK; (5) Norway; (6) Sweden; (7) Switzerland; (8) Canada;

(9) Australia; (10) New Zealand; (11) South Africa; (12) Brazil; (13) Chile; (14) Mexico; (15)

India; (16) Korea; (17) Malaysia; (18) Philippines; (19) Singapore; (20) Thailand; (21) China;

(22) Indonesia; (23) Peru; (24) Turkey; and (25) Saudi Arabia.

A.2.1 Country-Specific Models

The first step in constructing the GNS25 model is to estimate a country-specific VARX∗ model

for each country in the system. Consider a global economy consisting of N economies, indexed

by i = 1, 2, .., N . Denote the country-specific variables by an mi× 1 vector yit and the country-

specific foreign variables by an m∗i × 1 vector y∗it =
∑N

j=1wijyjt, where wij ≥ 0 is the set of

granular weights with
∑N

j=1wij = 1, and wii = 0 for all i. The country-specific VARX∗ (2, 2)

model can be written as:

yit = hi0 + hi1t + δi0dit + δi1di,t−1 + δi2di,t−2 + Φi1yi,t−1

+ Φi2yi,t−2 + Ψi0y
∗
it + Ψi1y

∗
i,t−1 + Ψi2y

∗
i,t−2 + uit, (A.1)

where dit is a country-specific intercept-shift dummy variable which captures country-specific

structural breaks (if any). The choice of whether or not to include an intercept shift dummy for a

given country takes account of both statistical evidence derived from the CUSUM test statistics

developed by Brown et al. (1975) as well as anecdotal evidence on macroeconomic events that

are likely to have contributed to structural changes in specific countries/regions. Examples of

such events include the 1997 Asian currency crisis and the South American hyperinflation of the

1980s. The dummy variable, dit, follows the same lag structure as the continuous variables in

the model. The dimension of hij and δij , j = 0, 1, 2, is mi × 1 while the dimensions of Φij and

Ψij , j = 0, 1, 2, are mi×mi and mi×m∗i . As usual, we assume that uit ∼ iid (0,Σii) where Σii

is an mi ×mi positive definite matrix.

Assuming that the country-specific foreign variables are weakly exogenous (an assumption

which is borne out by formal tests as documented below), the VECM associated with (A.1) can

be written as follows:

∆yit = ci0 + c∗i0∆dit + c∗i1∆di,t−1 + Λi∆y
∗
it + Γi∆zi,t−1

+ αiβ
′
i (zi,t−1 − µidi,t−1 − γi (t− 1)) + uit, (A.2)

where zit = (y′it,y
∗′
it)
′, αi is an mi× ri adjustment matrix of rank ri and βi is an (mi + m∗i )× ri
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cointegrating matrix of rank ri. Notice that (A.1) can be rewritten in terms of zit as:

Ai0zit = h∗i0 + hi1t +Ai1zi,t−1 +Ai2zi,t−2 + uit, (A.3)

where h∗i0 = hi0 + δi0dit + δi1di,t−1 + δi2di,t−2, Ai0 = (Imi ,−Ψi0), Ai1 = (Φi1,Ψi1), and

Ai2 = (Φi2,Ψi1). Note that the parameters of (A.3) can be obtained from those of (A.2) asAi0 =

(Imi ,−Λi0), Ai1 = Ai0 +Πi +Γi, Ai2 = −Γi, h
∗
i0 = ci0 +c∗i0∆dit +c∗i1∆di,t−1 + (−Πiµi) di,t−1,

hi1 = −Πiγi and Πi = αiβ
′
i.

The variables included in the GNS25 model are drawn from the following:

reit the real effective exchange rate

rit the short-term nominal interest rate

imit the log of real imports

exit the log of real exports

qit the log of real equity prices

∆pit the rate of inflation

yit the log of real output

pot the log of the oil price

The weakly exogenous foreign variables are computed as weighted averages of the data for the

remaining (N−1) countries in the model. GNS adopt the convention of Dees, di Mauro, Pesaran

and Smith (2007, DdPS) and define the weights using bilateral trade averages derived from the

IMF’s Direction of Trade Statistics over the period 1999-2001. As noted by GNS, the choice of

weighting scheme does not exert a dominant influence over the model output. Following Dees,

Holly, Pesaran and Smith (2007, DHPS), GNS define the log real effective exchange rate as

reit = eeit + p∗it − pit, where eeit + p∗it − pit = (eit − pit) − (e∗it − p∗it) = ẽit − ẽ∗it and where, in

turn, eit is the nominal exchange rate vis-à-vis the US$, e∗it =
∑N

j=1wijejt, eeit =
∑N

j=1wijeijt

is the nominal effective exchange rate, pit the national price level and p∗it the foreign price level.

Where data availability is unconstrained (i.e. for countries i = 2, 3, . . . , 20), the VARX∗

models include the following endogenous I(1) variables: yit = (reit, rit, imit, exit, qit,∆pit, yit)
′.

For countries i = 21, 22, . . . , 24, where the stock market data were unreliable or unavailable, we

have yit = (reit, rit, imit, exit,∆pit, yit)
′. Finally, for country i = 25 (Saudi Arabia) without an

official interest rate, yit = (reit, imit, exit,∆pit, yit)
′. In all cases but the US, the vector of weakly

exogenous foreign variables is given by y∗it = (pot , r
∗
it, q
∗
it,∆p∗it, y

∗
it)
′ where y∗it =

∑N
j=1wijyjt, p

∗
it =∑N

j=0wijpjt, ∆p∗it =
∑N

j=1wij∆pjt, r
∗
it =

∑N
j=1wijrjt, e

∗
it =

∑N
j=1wijejt, and q∗it =

∑N
j=1wijqjt,

wij is the share of country j in the trade of country i. The omission of ex∗it and im∗it from the
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model reflects the fact that our model covers more than 90% of the world trade in which case

imit ' ex∗it and im∗it ' exit.

The US (i = 1) is treated as the reference country such that its exchange rate is determined

through the N − 1 remaining country-specific models. Hence, re1t is excluded from the endoge-

nous variable set for the US model while ẽ∗1t is included among its weakly exogenous foreign

variables. Furthermore, following DdPS, we include the oil price as an endogenous variable

in the US model, reflecting the dominant position of the US in the global economy. We also

treat the vector of weakly exogenous foreign variables slightly differently, as the US economy is

sufficiently large to drive events in global financial markets. In this regard we exclude both r∗1t

and q∗1t from the US model as they are unlikely to be weakly exogenous. Therefore, we have

y1t = (pot , r1t, im1t, ex1t, q1t,∆p1t, y1t)
′ and y∗1t = (ẽ∗1t,∆p∗1t, y

∗
1t).

Table 1 in the main text presents a concise summary of the GNS25 model specification,

while Table A.1 records the results of standard statistical tests for structural breaks, co-breaking

and weak exogeneity for each of the country-specific models in turn. The tests provide strong

foundations for the specification adopted in the paper.

A.2.2 Combining the National Models into the Global Model

GNS define the (m + 1) × 1 vector of intermediate global variables as ỹt =
(
ỹ′1t, ỹ

′
2t, ..., ỹ

′
Nt

)′
,

where ỹ1t = (ẽ1t, p
o
t , r1t, im1t, ex1t, q1t,∆p1t, y1t)

′, ỹit = (ẽit, rit, imit, exit, qit,∆pit, yit)
′ for i =

2, ..., N and m =
∑N

i=1mi. Insodoing, all of the endogenous variables from each of the country-

specific VARX∗ models are collected into the global vector ỹt.

Next, one must define the (mi + m∗i ) × (m + 1) link matrices, denoted W i. We follow the

typical approach in the literature, which employs time-invariant bilateral trade weights based

on IMF DOTS data in the construction of the link matrices.1 Employing the country ordering

given in Section A.2 and also shown in Table 1 of the main text, the W i’s are given by:

W 1
10×170

=

 R11 07×7 · · · 07×7 07×6 · · · 07×6 07×5

03×8 W 1,2 · · · W 1,19 W 1,20 · · · W 1,24 W 1,25

 ,

W i
12×170

=

 Ri1 Ri2 Ri3 · · · Ri,25

W i1 W i2 W i3 · · · W i,25

 , i = 2, ..., 25,

1It should be noted that a wide range of alternative weighting schemes could be adopted in practice. For
example, Chen et al. (2009) employ time-invariant financial weights in their analysis of bank and financial sector
risk transmission while Cesa-Bianchi et al. (2012) use a time-varying weighting scheme to evaluate the changing
position of China and the Latin American economies in the global system. Alternatively, one could employ
appropriately defined spatial matrices or even a combined weighting scheme.
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where

R11 =
[

07×1 I7

]
, Ri1 =

 −wi1 01×7

06×1 06×7

 , i = 2, ..., 25,

{Rij}20j=2 =


 −wij 01×6

06×1 06×6

 if j 6= i

I7 if j = i

 , i = 2, ..., 25,

{Rij}24j=21 =


 −wij 01×5

06×1 06×5

 if j 6= i

I6 if j = i

 , i = 2, ..., 25,

Ri,25 =


 −wi,25 01×4

06×1 06×4

 if i 6= 25

I5 if i = 25

 ,

{W 1j}20j=2 =


w1j 0 0 0 0 0 0

0 0 0 0 0 w1j 0

0 0 0 0 0 0 w1j

 ,

{W 1j}24j=21 =


w1j 0 0 0 0 0

0 0 0 0 w1j 0

0 0 0 0 0 w1j

 , W 1,25 =


w1,25 0 0 0 0

0 0 0 w1,25 0

0 0 0 0 w1,25

 ,

and for i = 2, ..., 25,

W i1 =



0 1 0 0 0 0 0 0

0 0 w∗i0 0 0 0 0 0

0 0 0 0 0 w∗∗i0 0 0

0 0 0 0 0 0 wi0 0

0 0 0 0 0 0 0 wi0


, {W ij}20j=2 =



0 0 0 0 0 0 0

0 w∗ij 0 0 0 0 0

0 0 0 0 w∗∗ij 0 0

0 0 0 0 0 wij 0

0 0 0 0 0 0 wij


,

{W ij}24j=21 =



0 0 0 0 0 0

0 w∗ij 0 0 0 0

0 0 0 0 0 0

0 0 0 0 wij 0

0 0 0 0 0 wij


, W i,25 =



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 wi,25 0

0 0 0 0 wi,25


.

where wij is the weight of country i in the trade of country j, w∗ij is the ith country’s adjusted
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trade-weight with the jth country after allowing for the lack of Saudi interest rate data, and

w∗∗ij is the ith country’s trade-weight with the jth country adjusted to accommodate the lack of

reliable stock market data for China, Indonesia, Peru, Turkey and Saudi Arabia. Notice that∑N
j=1wij =

∑N
j=1w

∗
ij =

∑N
j=1w

∗∗
ij = 1, and wii = w∗ii = w∗ii = 0 for all i.

Using these link matrices, the zit’s for each country-specific model may be re-written in

terms of the vector of global variables, ỹt, as follows:

zit = W iỹt, i = 0, 1, ..., N. (A.4)

Using (A.4) in (A.3) and stacking the results, we obtain the following global model:

H0ỹt = h∗0 + h1t +H1ỹt−1 +H2ỹt−2 + ut, (A.5)

where H i = (W ′
1A
′
1i, ...,W

′
NA

′
Ni)
′
, h∗0 =

(
h∗′10, ...,h

∗′
N0

)′
, h1 =

(
h′11, ...,h

′
N1,
)′

and ut =

(u′1t, ...,u
′
Nt)
′ for i = 0, 1, 2.

Since ẽ1t is not included in the set of US variables for VARX∗ model but it is implicitly

included in the global system, we must impose one additional restriction. Given that we define

nominal exchange rates vis-à-vis the US Dollar, it follows that e1t = 0 and thus, ẽ1t = −p1t.

By imposing this restriction we are able to solve the system, although we are now solving for

the price level in the US as opposed to inflation in the remainder of the countries (see DdPS for

further details).

Finally, we define the m × 1 vector of global variables: yt =
(
ẙ′1t, ỹ

′
2t, ..., ỹ

′
Nt

)′
, where

ẙ1t = (pot , r1t,m1t, x1t, q1t, p1t, y1t)
′, and the ỹit’s are defined as above. To solve for the price

level in the special case of the US, we set:

ỹt = S0yt − S1yt−1, (A.6)
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where S0 and S1 are (m + 1)×m selection matrices given by:

S0 =



0 0 0 0 0 −1 0 0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 Im−m1



, S1 =



0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0m−m1


Using (A.6), (A.5) can be rewritten in terms of yt as follows:

F 0yt = h∗0 + h1t + F 1yt−1 + F 2yt−2 + F 3yt−3 + ut, (A.7)

where F 0 = H0S0, F 1 = H1S0 +H0S1, F 2 = H2S0 −H1S1, and F 3 = −H2S1. The final

GVAR model is obtained as:

yt = g∗0 + g1t +G1yt−1 +G2yt−2 +G3yt−3 + εt, (A.8)

where Gj = F−10 F j , j = 1, 2, 3, g∗0 = F−10 h
∗
0, g1 = F−10 h1, and εt = F−10 ut, and E

(
uitu

′
jt

)
=

Σu,ij for t = t′ and 0 otherwise.

Recall from the main text that we construct the covariance matrix from equation (A.7)

taking into account the results of the cross section dependence test proposed by Pesaran (2004).

Table A.2 records the results of the cross section dependence test. In those off-diagonal blocks

where the null of cross section independence is rejected, we estimate the block as Σ̂u,ij =

(ûitû
′
jt)/(T − √ninj) where ni and nj are the number of regressors in the country-specific

models for countries i and j, respectively. Where the null of cross section independence is not

rejected, we impose a null block.

A.3 Details of the Aggregation Schemes used in the Paper

In this Section, we provide further details of the block aggregation routines used in the paper to

evaluate connectedness among countries and among groups of common variables. Using the block

representations of the renormalised connectedness matrix shown below, it is straightforward to

8



compute the associated generalised connectedness measures following the derivations in Section

2.1 of the main text.

A.3.1 Connectedness Among Countries

The updated version of the GNS model used in the paper contains 169 globally endogenous

variables covering 25 countries including one common global variable (the oil price, pot ). The

endogenous variable set for country k, yk,t, is detailed in Table 1 in the main text. Maintaining

the country order in Table 1, note that we may write the vector of global variables as:

yt =
(
pot , ỹ

′
US,t, . . . ,y

′
SA,t

)′
(A.9)
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where ỹUS,t denotes the vector of endogenous variables for the US excluding the oil price. The

renormalised connectedness matrix corresponding to these groups is given by:

C(h)
R

(m×m)

=


C

(h)
po←po C

(h)
po←US · · · C

(h)
po←SA

C
(h)
US←po C

(h)
US←US · · · C

(h)
US←SA

...
...

. . .
...

C
(h)
SA←po C

(h)
SA←US · · · C

(h)
SA←SA

 (A.10)

where C
(h)
po←po is a scalar measuring the own-variable FEV share of the oil price, C

(h)
po←` is a 1×m`

row vector collecting spillovers from country ` to the oil price, C
(h)
k←po is a mk× 1 column vector

collecting spillovers from the oil price to country k and C
(h)
k←` is an mk ×m` matrix containing

spillovers from country ` to country k with k, ` = US,EU, . . . , SA.

Remark 1 In many applications of high dimensional models in economics and finance, the re-

searcher is principally interested in a subset of focus countries. In such cases, one could reduce

the output dimensionality of the model by considering one or more focus countries separately

while aggregating the remaining countries into appropriately defined blocs. This is a straightfor-

ward extension of the country-level case described above.

A.3.2 Connectedness Among Groups of Common Variables

In Figures 4, 6 and 7 of the main text we evaluate connectedness among the following G = 8

variable groups: (1) the oil price, (2) the exchange rates for all countries, (3) the interest rates

for all countries, (4) the stock indices for all countries, (5) real exports for all countries, (6) real

imports for all countries, (7) inflation for all countries and (8) output for all countries. This is

achieved by block aggregation of the renormalised connectedness matrix as follows:

C(h)
R

(m×m)

=


G

(h)
po←po G

(h)
po←re · · · G

(h)
po←y

G
(h)
re←po G

(h)
re←re · · · G

(h)
re←y

...
...

. . .
...

G
(h)
y←po G

(h)
y←re · · · G

(h)
y←y

 (A.11)

where G
(h)
po←po is a scalar measuring the own-variable FEV share of the oil price, G

(h)
po←` is a

1 × m` row vector collecting spillovers from the `th variable group to the oil price, G
(h)
k←po is

a mk × 1 column vector collecting spillovers from the oil price to the kth variable group and

G
(h)
k←` is an mk×m` matrix containing spillovers from variable group ` to variable group k with

k, ` = po, re, . . . , y. mk and m` respectively denote the number of countries for which we have

11



data for variable groups k and `.

A.4 Data Construction

Real GDP — yit = ln (Yit)

Real GDP series for 32 countries were taken from the IMF’s International Financial Statis-

tics (IFS) database (Index, 2005 = 100). When unavailable, the IFS series were completed

from other sources. Data from the OECD’s Main Economic Indicators were used for Brazil

from 1996Q1 onwards. When data was unavailable at the quarterly frequency, the annual

series were interpolated following the method in DdPS (Supplement A). This technique

was employed for Brazil from 1980-1995, China from 1980-1999, India from 1980-1996, for

Indonesia from 1980-1982, for Malaysia from 1980-1987, for the Philippines for 1980, for

Thailand from 1980-1992, for Turkey from 1980-1986, and for Saudi Arabia from 1980-

2009. The data for Saudi Arabia from 2010 onwards were extrapolated using GDP growth

rate from Saudi Arabian Central Department of Statistics and Information. Where neces-

sary, the data were seasonally adjusted using the US Census Bureau’s X12 routine.

Consumer Price Index — pit = ln (CPIit)

CPI data were collected from the IMF’s IFS database (Index, 2005 = 100). CPI data

for China from 1980-1986 and for Germany from 1980-1990 was provided by the Bank of

Korea. The Chinese series was completed using IFS data from 1987 onwards.

Nominal Exchange Rate — eit = ln (Eit)

Nominal exchange rates (Eit) measured in units of national currency per US Dollar were

collected from the IMF’s IFS database. The exchange rate series for the Eurozone are the

ECU-EURO/USD rate from the OECD’s Main Economic Indicators.

Short-Term Nominal Interest Rate — rit = 0.25× ln (1 + Rit/100)

Short-term interest rate series (Rit) measured in percent per annum were taken from the

IFS Money Market Rate series. Where the IFS data was incomplete or unavailable, other

IFS series were used. Particularly, the IFS Deposit Rate series was used for Chile, China

and Turkey, the IFS Treasury Bill Rate series was used for Mexico and the IFS Discount

Rate series was used for New Zealand and Peru. For India, the IFS Money Market Rate

series over 1998Q2-2006Q2 were retrieved from the Reserve Bank of India. For Norway, the

NIBOR 3-month rates from the OECD were used. Among Eurozone countries, Finland,

Germany, Italy, and Spain have their own interest rate series over the full sample period

12



whilst for Austria, Belgium, France, and Netherlands, the IFS Money Market Rate series

ended at 1998qQ4 and were then augmented with overnight Euro interbank rates.

Real Exports and Imports — exit = ln
(
EXPORTit×Eit

CPIit

)
& imit = ln

(
IMPORTit×Eit

CPIit

)
IFS Goods, Value of Exports series (EXPORTit) and IFS Goods, Value of Imports series

(IMPORTit), measured in millions of US$, were available for 31 countries. Where neces-

sary, the data were extrapolated backward using export and import growth rates obtained

from the World Bank. This technique was applied for Belgium over the period 1980-1992

and for China in 1980. The quarterly series for Saudi Arabia were collected from the IMF’s

Direction of Trade Statistics (DOTS). All the series were then seasonally adjusted using

the US Census Bureau’s X12 routine.

Real Equity Price Index — qit = ln
(

Qit

CPIit

)
Equity price indices (Qit) were collected from the OECD’s Main Economic Indicators

(all shares/broad, 2005 = 100) for 31 countries. Where the OECD equity price series

was incomplete or unavailable, IFS data were used. Specifically, the IFS industrial share

price index series were used for Belgium from 1980-1985Q1, for Brazil from 1980-1992,

for Chile from 1980-1989, for Korea for 1980, for Norway from 1980-1985, and for Spain

from 1980-1984. Datastream series were used for Malaysia from 1980Q2 onwards, for

Philippines from 1986Q2 onwards, for Singapore from 1981Q2 onwards, and for Thailand

from 1995Q4 onwards.

Spot Price of Crude Oil — pot = ln (POILt)

The UK Dated Brent series (POILt), measured in US$ per barrel, was retrieved from the

IMF’s IFS Commodity Price database.
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