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Abstract 

We generalize the portfolio shifts model advanced by Evans and Lyons (2002a; b), 

and develop the dynamic asymmetric portfolio shifts (DAPS) model by explicitly 

allowing for possible market under- and overreactions and for asymmetric pricing 

impacts of order flows. Using the Reuters D2000-1 daily trading data for eight 

currency markets over a four-month period from 1 May to 31 August 1996, we find 

strong evidence of a nonlinear cointegrating relationship between exchange rates and 

(cumulative) order flows: The price impact of negative order flows (selling pressure) 

is overwhelmingly stronger than that of the positive ones (buying pressure). Through 

the dynamic multiplier analysis, we find two typical patterns of the price discovery 

process. The markets following overreactions tend to display a delayed overshooting 

and a volatile but faster adjustment towards equilibrium whereas the markets 

following underreactions are generally characterized by a gradual but persistent 

adjustment. In our model, these heterogeneous adjustment patterns reflect different 

liquidity provisions associated with different market conditions following under- and 

overreactions. In addition, the larger is the mispricing, the faster is the overall 

adjustment speed, a finding consistent with Abreu and Brunnermeier (2002) and Cai 

et al. (2011). We also find that underreactions are followed mostly by positive 

feedback trading while overreactions are characterized by delayed overshooting in 

the short run but corrected by negative feedback trading at longer horizons, the 

finding is consistent with Barberis et al. (1998) who show that positive short-run 

autocorrelations (momentum) signal underreaction while negative long-run 

autocorrelations (reversal) signal overreaction. 

 

JEL classification: C22, F31, G15 
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impacts, asymmetric cointegrating relationship and dynamic multipliers 



1 Introduction

With the poor performance of the macro approach to exchange rate determination (Meese and
Rogoff, 1983; Frankel and Rose, 1995; Flood and Taylor, 1996), the micro approach has offered
a different view to understanding exchange rate movements.1 The macro approach assumes
that all the relevant information is publicly available and directly impounded in the exchange
rate. The micro approach, on the other hand, emphasizes that some information is not publicly
available but dispersed among agents (Ito, Lyons, and Melvin, 1998). By integrating both public
and non–public information gradually into exchange rates, the trading process plays a central
role in the micro approach (Lyons, 2001; Evans, 2002; Evans and Lyons, 2005; 2008; Love and
Payne, 2008; Rime et al., 2010).2

Order flow emerges as the most important micro determinant in conveying relevant informa-
tion for exchange rate determination. Defined as the difference between signed trades with seller
(buyer) initiated trade taking a negative (positive) sign, negative (positive) order flow signals
selling (buying) pressure, thus predicting negative (positive) return. However, most existing
studies predominantly employ the static return regression, mainly because the continuous mar-
ket equilibrium is simply assumed (Evans and Lyons, 2002a; b). Alternatively, empirical studies
fail to provide conclusive evidence of a cointegrating relationship between the exchange rate and
order flow (Rime, 2001; Bjønnes and Rime, 2005; Boyer and van Norden, 2006; and Berger et
al., 2008). The continuous market equilibrium holds only if all agents are fully rational, which
does not always hold in practice. Furthermore, inconclusive evidence on cointegration may be
due to neglecting an important fact that the exchange rate is likely to respond nonlinearly and
asymmetrically to news and trades as documented in Luo (2001), Andersen et al. (2003), Berger
et al. (2008) and Wang and Yang (2008). In this regard existing micro studies are limited in
uncovering the dynamic, and possibly asymmetric, price discovery process in forex markets.

A growing number of studies document the asymmetric responses to positive and negative
information, see Soroka (2006) for a detailed review. Studies in Psychology find that unfavourable
information has a stronger impact on impressions than does favourable information (Skowronski
and Carlston, 1989; Vonk, 1996). In Politics Bloom and Price (1975) and Lau (1985) provide
evidence that negative information has a greater influence on voting behaviour. Moreover, the
prospect theory advanced by Kahneman and Tversky (1979) suggests that individuals react
asymmetrically to a loss and a gain of the same value with the former inducing a stronger
reaction. Hence, if forex traders do respond asymmetrically to positive and negative information,
then the imposition of the linear relationship between the exchange rate and order flow is clearly
misleading. The path–breaking study by Evans and Lyons (1999, p.20) notes that ‘the linearity
of our portfolio shifts specification depends crucially on several simplifying assumptions, some
of which are rather strong on empirical grounds.’

This paper aims to develop a general model which can address persistent mispricing as well
as asymmetric pricing impacts of order flows on exchange rates by significantly extending the
portfolio shifts model developed by Evans and Lyons (2002a; b). Our model is also built upon
previous studies of ‘behaviourally biased’ traders and the limited arbitrage in financial markets,
e.g. De Long et al. (1990a,b), Shleifer and Vishny (1997), Barberis et al. (1998), Daniel et al.
(1998), and Abreu and Brunnermeier (2002, 2003). Specifically, we assume that the potentially
biased behaviours of noise traders can cause the market to underreact or overreact in the short
run.3 Rational traders, who are risk–averse, short–lived and faced with fundamental risk, noise
trader risk and synchronisation risk or agency problem, often fail to eliminate mispricing imme-

1For more complete reviews of the literature, see Sarno and Taylor (2001) and Sager and Taylor (2006).
2Evans and Lyons (2008) show that macro news may explain up to 30% of exchange rate variation but two

third of its impact is indirect via the trading process.
3Daniel et al. (1998) attribute under– and overreactions to investor psychology - overconfidence and biased

self-attribution. Barberis et al. (1998) posit that under– and overreactions can occur as the result of partially
unpredictable movements in investor sentiment - failures of individual judgement under uncertainty.
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diately and completely.4 Hence, noise traders could affect the price at least in the short run.
Moreover, in our model, persistent underreaction (overreaction) may affect the market liquidity
by decreasing (increasing) the speculative demand. As a result, dealers may hold net positions
overnight, rendering the market not always at equilibrium. Furthermore, in most micro models,
order flows work as the key information integrator channeling the effects of both public and non–
public information on exchange rates. To explicitly account for possible asymmetric impacts of
favourable and unfavourable information on the exchange rate as documented in Andersen et al.
(2003), we decompose order flows into buying and selling pressures, representing up (favourable)
and down (unfavourable) markets, respectively, and develop the Dynamic Asymmetric Portfolio
Shifts (DAPS) model. This framework then allows us to address potential asymmetric pricing
impacts of buying and selling pressures through different risk–aversion levels of traders observed
in up and down markets.

The distinctive features of our DAPS model lie in its allowance for persistent mispricing,
and asymmetric pricing impacts of order flows in both the short– and the long–run, which has
been neglected in existing studies. Our model nests the portfolio shifts model of Evans and
Lyons (2002b) as a special case in which the market is always at equilibrium and traders respond
symmetrically to favourable and unfavourable information. The validity of our theoretical model
can be analysed in a flexible manner, employing the Nonlinear Autoregressive Distributed Lag
(NARDL) model proposed by Shin, Yu and Greenwood–Nimmo (2009, SYG). Moreover, our
model can easily accommodate both the short– and the long–run pricing impact of trades through
the dynamic multiplier analysis, providing us a natural framework for assessing market under–
and overreaction especially in the short-run. By construction the market underreacts (overreacts)
when the short–run price impact of trades is smaller (greater) than its long–run counterpart. In
addition, the ability to address the complex dynamic price discovery process through dynamic
multipliers renders our model considerably superior to existing approaches.

Using the Reuters D2000–1 daily trading dataset in eight currency spot markets (German
mark, British pound, Japanese yen, Swiss franc, French franc, Belgian franc, Italian lira and
Netherlandish guilder, all against the US dollar) over a 4–month period from 1 May to 31
August 1996, we find strong evidence in favour of an asymmetric cointegrating relationship
between exchange rates and (cumulative) order flows. Specifically, exchange rates respond to
trades in a nonlinear fashion with dollar–selling pressure having a stronger pricing impact than
dollar–buying pressure. This indicates that traders react more strongly to unfavourable trading
information than to the favourable one, supporting our theoretical prediction that agents’ risk–
aversion degrees are asymmetric in up and down markets. Our empirical results further show
that the short–run price impacts of order flow deviate considerably from equilibrium, indicating
either market overreaction or underreaction, and suggesting that the equilibrium price is not
always reached instantly at the end of each trading day. This finding is generally consistent with
the presence of noise traders whose behavioural trades may cause persistent mispricing in the
short run, as argued by DeLong et al. (1990a; b), Shleifer and Vishny (1997) and Abreu and
Brunnermeier (2002, 2003).

Next, we find two typical patterns of the price discovery process among eight markets: one
following market overreaction and the other following underreaction. The former is generally
characterised by the short–run overshooting and volatile adjustments. Our theoretical model
predicts that this is mainly triggered by excess speculative demand. We also find that these
possibly destabilising effects related to excess speculative demand are only short–lived, and
overreactions are relatively quickly corrected. This suggests that such liquid market condition in

4DeLong et al. (1990a) suggest that the risk incurred from unpredictable noise traders’ beliefs prevents ra-
tional arbitrageurs from betting aggressively against them. Shleifer and Vishny (1997) show that professional
arbitrageurs are often subject to capital constraints and performance–based arbitrage, and become ineffective
even when mispricing is large and significant. Abreu and Brunnermeier (2002) argue that it is the coordination
problem among arbitrageurs that causes persistent mispricing.
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conjunction with the nature of mispricing (i.e. overreaction) will be likely to offer arbitrageurs
a greater incentive to join the adjustment process without delay. On the contrary, a relatively
gradual and persistent adjustment pattern is observed in the markets following underreaction.
This adjustment pattern can be explained by the low speculative demand associated with the
market condition following underreaction. In addition, we find that the larger is the mispricing
(as measured by the differential between the short– and the long–run price impacts), the faster
is the overall adjustment speed, indicating the greater incentive for arbitrageurs to act on such
information, which is consistent with Abreu and Brunnermeier (2002) and Cai et al. (2011).

Finally, our empirical results also provide some evidence on feedback trading strategies in
forex markets. Underreactions are followed predominantly by positive feedback trading, which
may reflect the gradual but dominant arbitraging activity by rational traders. Working as a
stabilising force, this pushes the market gradually towards equilibrium. By contrast, we observe
delayed overshooting and (often) over–adjusting patterns following overreactions, which may
reflect the trend–chasing trading of noise traders (DeLong et al., 1990b; Hong and Stein, 1990).
Clearly, this results in market instability over the short–term. At longer horizons, however,
overreactions tend to be corrected by negative feedback trading. These findings provide support
for two market regularities observed in terms of return autocorrelations: positive short–run
autocorrelations (momentum) signal underreaction whilst negative long–run autocorrelations
(reversal) signal overreaction, as analysed in Barberis et al. (1998) and Daniel et al. (1998).

The rest of the paper is organized as follows. In Section 2 we briefly introduce the portfolio
shifts model. In Section 3 we develop our extended DAPS model. Section 4 describes the data
and presents our main empirical findings. Section 5 provides concluding remarks.

2 Portfolio Shifts Model

We first summarise the portfolio shifts model advanced by Evans and Lyons (2002a; b) (hence-
forth, EL). EL aims to accommodate the data at daily frequency; to support that a causation
runs from order flow to price;5 and to demonstrate that the price impact of order flow is persis-
tent. Order flow can convey two basic information: one about the stream of future cash flow and
the other about the market–clearing discount rate. The EL model is developed on the second
information.

At the start of each trading day, uncertain public demands for foreign exchanges are realized
through customer–dealer orders which are not publicly observable. Through the trading pro-
cess, these demand realisations, embedded with information content, affect prices because price
concessions are required for the rest of the market to reabsorb them. The EL model follows a
Bayesian–Nash Equilibrium (BNE) approach and relies on several key assumptions.

Assumption 2.1 The economy is a pure exchange one with T +1 trading periods, and with two
assets - one riskless (gross return normalised to one) and the other risky. The payoff on the risky
asset, Rt, is composed of the series of increments, Rt =

∑t
j=0

∆Rj where ∆Rt is the publicly
observed increment in period t before trading, and follows the identical and independent normal
distribution with zero mean and constant variance, σ2R.

Assumption 2.2 The operating foreign exchange market is of the dealership–type with N deal-
ers, indexed by i =, 1..., N . A continuum of nondealer customers (the public), indexed w ∈ [0, 1],
is large relative to the N dealers.

Assumption 2.3 All agents have an identical negative exponential utility function with constant
absolute risk aversion (CARA), Ut = Et [− exp (−θWt+1)], where Et is the expectations operator
conditional on the information set at the end of period t, Wt+1 is the nominal wealth at the end
of period t+ 1, and θ is the common constant absolute risk aversion parameter.

5Bacchetta and van Wincoop (2006) provide a theoretical framework under which order flow precedes price.
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Assumption 2.4 The aggregate demand of the public for the risky asset is not perfectly elastic.

Assumptions 2.2 and 2.3 imply that the risk–bearing capacity of the public is much greater
than that of the dealers, ensuring that the dealers have a comparative disadvantage in holding
overnight positions. Dealers thus attempt to end each day with no net position in the risky asset.

2.1 Trading Process

Round 1: Dealers trade with the public. At the beginning of each day, all market par-
ticipants observe the payoff increment, ∆Rt, representing publicly available information. Then,
each dealer simultaneously and independently quotes a scalar price, P 1

it (round 1, dealer i, day
t), to customers, at which he/she agrees to buy and sell any amount.6 After trading with cus-
tomers, each dealer receives a customer order realization, C1

it ∼ N
(

0, σ2C
)

with C1
it < 0 indicating

customer net selling (dealer i’s net buying). The aggregate customer–dealer order flow at the
end of round 1 can be expressed as

C1
t =

N
∑

i=1

C1
it. (2.1)

C1
it is observable only to dealer i, representing the portfolio shifts of dealer i’s nondealer cus-

tomers. C1
t is unobservable to all agents, representing the aggregate portfolio shifts of the

nondealer public.

Round 2: Dealers trade among themselves. Based on the observed C1
it, each dealer

simultaneously and independently quotes a price, P 2
it, to all other dealers. Dealer i also simul-

taneously and independently trades on other dealers’ quotes. This results in a net interdealer
trade in round 2, ∆Qit with ∆Qit < 0 representing dealer i’s net–selling. At the close of round
2, all agents observe the interdealer order flow:

∆Qt =
N
∑

i=1

∆Qit. (2.2)

Round 3: Dealers trade again with the public. To share overnight risk, dealers trade
again with the public whose trading motive is purely speculative. Conditional on available in-
formation, each dealer simultaneously and independently quotes a price, P 3

it. Under Assumption
2.4 that the public has finite risk–bearing capacity, dealers set the price, P 3

it, such that the public
is willing to absorb their inventory imbalances (Evans and Lyons, 2002a; b). Each dealer ends
the day with no net position:

C1
t + C3

t = 0, (2.3)

where C3
t =

∑N
i=1

C3
it is the unobservable aggregate demand of the public in round 3, and C3

it is
the customer order realization received by and observable only to dealer i. Therefore, P 3

t reflects
information about both ∆Rt and ∆Qt.

2.2 Static Symmetric Portfolio Shifts Model

The EL model is derived on the basis of several key propositions. Firstly, a quoting strategy
of dealers is consistent with symmetric BNE only if all dealers quote a common price at each
trading round (Propositions 1 and 2 in Evans and Lyons, 1999; 2002a):

P 1
t = P 2

t = P 3
t−1 +∆Rt, (2.4)

6For simplicity, the price is considered instead of price schedule (bid–offer spread). As noted by Evans and
Lyons (2002a; b), the introduction of the price schedule is a straightforward extension.
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P 3
t = P 2

t + λ∆Qt, (2.5)

where λ is a positive parameter capturing the pricing impact of order flow.
Secondly, the interdealer trade in round 2, Qit, is proportional to the customer order, C1

it,
received in round 1 (Proposition 3 in Evans and Lyons, 2002a):

∆Qit = αC1
it, ∀i = 1, ..., N, (2.6)

where α is a positive constant. Thus, through the observable ∆Qt at the end of round 2, all
agents can infer the unobservable C1

t in round 1.
Thirdly, the aggregate public demand in round 3 can be written as a linear function of the

expected returns (Proposition 4 in Evans and Lyons, 2002a):

C3
t = γ

[

Et

(

P 3
t+1|Ω

3
t

)

− P 3
t

]

, (2.7)

where Ω3
t is the information set available to the public in round 3 of day t, and γ = (θσ2

R|Ω)
−1

is the positive price sensitivity of demand coefficient and captures the public’s aggregate risk–
bearing capacity with θ being the constant absolute risk aversion parameter and σ2

R|Ω being the
conditional variance of return.

Combining (2.1)-(2.7), we can derive the link between order flow and price. From (2.1)-(2.3)
and (2.6), order flow can be written as

C1
t =

∆Qt

α
= −C3

t . (2.8)

Thus, the public’s aggregate demand for the risky asset in round 3 can be expressed as

P 3
t = E[P 3

t+1|Ω
3
t ]−

C3
t

γ
= E[P 3

t+1|Ω
3
t ] +

∆Qt

αγ
= E[P 3

t+1|Ω
3
t ] + λ∆Qt, (2.9)

where λ = (αγ)−1 > 0 captures the pricing impact of order flow and depends on the aggregate
risk–bearing capacity of the public, γ, and the dealers’ trading behaviour, α. The right–hand
side of (2.9) is the cumulative expected payoffs on the risky asset conditional on the available
information set, Ω3

t , which is then adjusted for risk premium in period t, λ∆Qt (Evans and
Lyons, 1999). (2.9) can be rewritten in terms of payoffs adjusted for risk premia as

P 3
t =

t
∑

j=0

(∆Rj + λ∆Qj) = Rt + λQt, (2.10)

where Qt =
∑t

j=0
∆Qj is the cumulative order flow. Noting that P 3

t is the cumulative sum of

price changes over t trading periods and assuming that ∆P 3
0 = P 3

0 , we can rewrite (2.10) as

t
∑

j=0

∆P 3
j =

t
∑

j=0

(∆Rj + λ∆Qj). (2.11)

Under BNE and assuming that the public holds rational expectations, the price change in round
3 from day t− 1 to day t is simplified as (Proposition 5 in Evans and Lyons, 2002a):

∆Pt = ∆Rt + λ∆Qt. (2.12)

Evans and Lyons (2002a; b) propose (2.12) as the portfolio shifts model, which explains how
the effects of public and non-public information are channeled into price: (i) the direct effect
of public information via ∆Rt (directly impounded in price); (ii) the indirect effect of public
information via induced order flow, ∆Qt; and (iii) the direct effect of non-public information via
order flow ∆Qt.

7



The portfolio shifts model (2.12) crucially depends upon the market clearing condition, (2.3).
The pricing impact of trades is also constrained to be constant over time and homogeneous across
different market states. In practice, the validity of these constraint is questionable, in particular
when not all of the market participants are fully rational and/or when the risk preferences of
the public are heterogenous across different market states. Moreover, the static nature of the EL
model is unable to provide any prediction for the dynamic adjustment process whenever market
disequilibrium occurs.

3 Dynamic Asymmetric Portfolio Shifts Model

We derive a general model which accounts for possible market underreactions and overreactions
by allowing for the presence of ‘pseudo–informed’ noise traders in the public. Importantly, we
generalise two restrictive conditions of the EL model, relaxing the equilibrium condition (2.3) and
allowing the dynamic price impacts of trades to be asymmetric across different market states.7

3.1 Asymmetric Responses to Buying and Selling Pressures

There is growing evidence in Psychology (Skowronski and Carlston, 1989; Vonk, 1996), in Politics
(Bloom and Price, 1975; Lau, 1985) and in Economics (Bowman et al., 1999; Andersen et al.,
2003; Soroka, 2006), suggesting that individuals respond asymmetrically to positive and negative
information with the latter generating stronger reaction. The prospect theory developed by
Kahneman and Tversky (1979) offer a descriptive model of decision making in which individuals
react more strongly to a loss in value than to a gain of the same magnitude. Figure 1 plots
the hypothetical value function proposed by Kahneman and Tversky (1979), and shows that the
value function is generally convex for losses and concave for gains, and steeper for losses than
for gains. Hence, the drop in value (aggravation) caused by a loss is greater than the increase in
value (pleasure) generated by a gain of the same magnitude because individuals are loss–averse.
Kahneman et al. (1986) also stress that the response of individuals to unfavourable changes is
expected to be more intense than that to favourable changes.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Gain

Value

Loss

0

Figure 1: Kahneman and Tversky’s Hypothetical Value Function

Under the portfolio shifts framework, selling pressure (∆Qt < 0) reaslised in round 2 indicates
that the risk–averse public on average sells the risky asset in favor of the riskless one. In other
words, it signals bad news or an unfavourable change since it predicts negative return (loss)

7Sager and Taylor (2006) sketch several features of a theoretical micro exchange rate model which would
correspond closely to the real world. In particular, dealers do not always clear their positions overnight since the
public do not absorb dealers’ daily imbalances.
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for the risky asset in round 3. Conversely, by predicting positive return (gain) buying pressure
(∆Qt > 0) signals good news or a favourable change. To address the possibility that agents
would respond asymmetrically to buying and selling pressures of the same magnitude, we now
decompose the interdealer order flow into ‘buying’ and ‘selling’ pressures:8

∆Qt = ∆Q+
t +∆Q−

t , t = 0, ..., T, (3.1)

where ∆Q+
t = max (∆Qt, 0) and ∆Q−

t = min (∆Qt, 0). Without loss of generality, we identify
∆Q+

t and ∆Q−
t as signalling the ‘up’ (favourable) and the ‘down’ (unfavourable) markets for the

risky asset, respectively.
Now consider the exchange between dealers and the public in round 3 under up and down

markets. Recall that in this round dealers have to offer price concessions for the public to
reabsorb their risky imbalances. In up market dealers want the public to sell the risky asset
when it is gaining in value. On the contrary, in down market, dealers want the public to buy the
losing–value risky asset. Tversky and Kahneman (1991) note that the rate of exchange between
goods can be quite different depending on whether it is acquired or given up. When the public
agrees to exchange, they hold the riskless asset in the favourable market while they hold the
risky one in the unfavourable market. If the public is loss–averse, the concession required for
taking on the risky asset under selling pressure is likely to be greater than that for giving up the
risky asset under buying pressure of the same magnitude. The loss–averse feature of the public
can be incorporated in the portfolio shifts model by allowing the risk aversion to be greater in
down market than in up market as follows:9

Assumption 3.1 All agents have the following negative exponential utility functions:

Ut

(

ct
Ht

)

=

{

Et [− exp (−θ+ (ct\Ht))] if ∆Qt > 0
Et [− exp (−θ− (ct\Ht))] otherwise

}

,

where ct is the agent’s consumption of the risky asset; Ht is the common habit level of risky–asset
consumption for all agents; θ− > θ+ > 0 capture the different absolute risk aversion degrees for
all agents in the down and the up markets, respectively.

θ− > θ+ implies that the agent responds more strongly to selling pressure and demand greater
price concession to absorb risk than she does to buying pressure of the same magnitude. ct > 0
(ct < 0) indicates that the agent consumes the risky asset (riskless one). Ht is determined by the
history of aggregate consumption rather than the history of individual consumption. The habit
level is similar to a subsistence level (Samuelson, 1989), a habit index (Chapman, 1998), a habit
level (Campbell and Cochrane, 1999), a benchmark level (Abel, 1999), or a subjective reference
level (Brandt and Wang, 2003). We then model the habit formation as follows:

Ht =
s

∑

i=1

τi|C
3
t−i|, 0 < τi <

1

s
, s < t, (3.2)

where C3
t−1, ..., C

3
t−s are the public’s past aggregate consumptions of the risky asset in round 3

(purely speculative demand), and τi’s are sensitivity parameters. Large aggregate consumptions
of the risky asset in the past increase the habit level while small ones decrease it. The habit level
specified in (3.2) is external to all agents, and moves slowly in response to consumption with
restriction of 0 < τi < s−1.

Notice that by construction Ht > 0 because Ht = 0 only if C3
t−1 = C3

t−2 = ... = C3
t−s = 0,

meaning that the market does not function for s periods. Hence, the risky–asset consumption

8The coverage of zero order flows (∆Qt = 0) in our analyzed dataset ranges between 0 and 2% only.
9Evans and Lyons (2002c) also measure the utility of agents through their consumption.
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ratio, ct\Ht > 0 when ct > 0, and vice versa.10 More importantly, C3
t−i, i = 1, ...s, reflects

the amount of the risky asset changing hands at the closing price or the risk–bearing capacity
of the market at the end of day t − i. Hence, Ht is the weighted accumulation of speculative
demand and can be considered as a relative measure of market liquidity provision. In particular,
an increasing (decreasing) habit level reflects the public’s increasing (decreasing) speculative
demand, signalling a relatively more liquid (less liquid) market. The market liquidity provision,
therefore, can vary over time as the habit level of the public is time-varying. Accordingly, the
success of dealers’ attempts to clear their inventory imbalances in round 3 of each trading period
relies crucially on the time–varying market liquidity provision.11

3.2 Market Under- and Overreactions

Recent studies in behavioural finance have provided both theoretical frameworks and pervasive
empirical evidence of overreactions and underreactions in stock and foreign exchange markets.
In particular, Barberis et al. (1998) provide the statistical evidence that investors tend to
underreact to good news but overreact to a series of good or bad news. Such events are mainly
attributed to investor psychology or sentiment (Barberis et al., 1998; Daniel et al., 1998). To
provide a more general portfolio shifts framework with the possibility of market overreactions
and underreactions, we introduce the presence of heterogeneous traders and replace Assumption
2.2 of the EL model by

Assumption 3.2 The operating foreign exchange market is dealership–type with N dealers, in-
dexed by i =, 1..., N . A continuum of nondealer customers, indexed z ∈ [0, 1], consists of both
rational and noise traders, and is large relative to the N dealers.

Our model is built on the previous studies on the behaviours of noise traders, the limits of
arbitrage, and market under– and overreactions. In particular, in the presence of noise traders
whose investor sentiment is partially unpredictable, mispricing can occur and persist because
short–lived and risk–averse rational traders, faced with fundamental risk, noise trader risk (De-
Long et al., 1990a), synchronization risk (Abreu and Brunnermeier, 2002) and capital constraints
(Shleifer and Vishny, 1997), can only take small positions. Hence, the arbitrage of rational traders
is limited and fails to eliminate mispricing completely and immediately. The biased behaviours
of noise traders do affect prices at least in the short run. This is a challenge against the efficient
market hypothesis (Fama, 1998) which states that rational traders can take advantage of mis-
pricing to earn superior return without bearing any extra risk, removing mispricing immediately.

Lyons (1997) notes that there are two distinctive features of the simultaneous trade model
from the rational expectations models. One is that dealers have to contend with inventory shocks,
i.e. undesired open positions (hot potato), which are frequent and nontrivial. The other is that
when submitting orders, dealers cannot condition on the market–clearing price level which is
unknown and only revealed through the trading process. Suppose that the market underreacts
(overreacts) in round 1 of period t − j, j = 1, ..., r ≤ s, as a result of noise traders’ biased
behaviours. Then, the aggregate customer–dealer trade in round 1, C1

t−j , does not reflect the

correct market condition in period t− j, denoted by C1∗
t−j , i.e. C

1
t−j < C1∗

t−j (C1
t−j > C1∗

t−j). This
deviation is then passed on to dealers in trading rounds 2 and 3 of period t−j, causing mispricing,
i.e. P 3

t−j < P 3∗
t−j (P 3

t−j > P 3∗
t−j) with P 3∗

t−j denoting the equilibrium price level. Because of the
limited arbitrage, market under– or overreaction and mispricing may persist beyond trading
period t− j .

10For a representative agent, ct\Ht > 0 (ct\Ht < 0) signals ∆Q+ (∆Q−).
11Abel (1999) also measure the utility of agents by the consumption ratio in which case the absolute risk

aversion of all agents with respect to consumption, defined as θt = −
(

U′′(ct)
U′(ct)

)

=
(

θ

Ht

)

, is time–varying due to

the time–varying habit level Ht. The market liquidity condition, therefore, varies over time.
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By construction, the persistent market underreaction (overreaction) periods t−1, ..., t−r could
decrease (increase) the habit level in period t, resulting in a relatively less (more) liquid market.
Consequently, dealers may not be able to unload their risky imbalances in a liquidity–constrained
market, ending up holding net positions overnight. Alternatively, in a relatively liquid market,
dealers may not only clear their initial imbalances but also take on new (undesired) imbalances
in opposite direction due to excess speculative demand.12 To accommodate this possibility, we
relax the market clearing condition, (2.3) of the EL model as follows:

C1
t + C3

t = δt, (3.3)

where δt is the unobservable market aggregate imbalance given by

δt =
N
∑

i=1

δit, δit ∼ (0, σ2δ ), σ
2
δ 6= 0, (3.4)

and δit is the order imbalance held by dealer i. For convenience, we define It = −δt such that It
is the aggregate inventory imbalance of all dealers at the end of period t. Under (3.3) and (3.4),
the market is not always at equilibrium at the end of each trading period though the market will
return to equilibrium in the long run.

Depending on the dealers’ aggregate inventory imbalance position (It), we project three likely
outcomes at the end of each period in Table 1. Case 1 shows that the market is at equilibrium
because the dealers can clear their inventory imbalances. Cases 2 and 3 describe the situations
where underreaction and overreaction result in market disequilibrium in period t. In Case 2,
though the dealers follow the quoting strategy in (2.5), their quoted price in trading round 3,
P 3
t , does not induce the public to reabsorb the risky imbalances due to insufficient speculative

demand (decreasing habit level Ht). This means that P 3
t does not include the sufficient price

concession (risk premium) accounting for the low liquidity condition. As such, the absolute price
level, P 3

t , is smaller than its equilibrium counterpart, P 3∗
t , i.e. market underreaction. Turning

to Case 3, due to excess speculative demand (increasing habit level Ht), the dealers not only
clear their initial inventory imbalances from rounds 1 and 2, but also takes on new inventory
imbalances in opposite sign with their quoted price in round 3, P 3

t . This means that P 3
t offers a

higher price concession than required under the high liquidity condition. Therefore, the absolute
price level, P 3

t , is greater than its equilibrium counterpart, P 3∗
t , i.e. market overreaction.

Case
R. 1 R. 2 R. 3

C 1
t vs.C 3

t

It Speculative Market
C 1
t ∆Qt C 3

t (= −δt) Demand Condition

1
(+) (+) (−) |C 1+

t | = |C 3−
t | 0

Sufficient Equilibrium
(−) (−) (+) |C 1−

t | = |C 3+
t | 0

2
(+) (+) (−) |C 1+

t | > |C 3−
t | (−)

Insufficient Underreaction
(−) (−) (+) |C 1−

t | > |C 3+
t | (+)

3
(+) (+) (−) |C 1+

t | < |C 3−
t | (+)

Excess Overreaction
(−) (−) (+) |C 1−

t | < |C 3+
t | (−)

*‘R.’ denotes Trading Round. (+) and (−) denotes buying and selling pressure, respectively.

Table 1: Possible Outcomes of Each Trading Period

Notice that, under Case 2 the dealers’ aggregate inventory imbalance (It) and market order
flows in rounds 1 and 2 of period t (which indicate the market direction) are of the opposite signs,
suggesting that the dealers’ risk exposure and the market direction are negatively correlated. By

12Chordia et al. (2002) show that aggregate order imbalances in the stock market reduce market liquidity
and make market–maker’s inventories experience periodic strains. Such inventory strains could persist beyond a
trading day, leaving extended effects on liquidity.
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contrast, the dealers’ risk exposure is positively correlated with the market direction under Case
3. In sum, Cases 2 and 3 show that the dealers may hold undesired imbalances overnight
due to mispricing and insufficient or excess speculative demand. We summarise the important
implication of this discussion in the following assumption:

Assumption 3.3 Let ω be the correlation coefficient between the interdealer order flow (∆Qt)
and the dealers’ aggregate inventory imbalance (It). Then, ω < 0 (ω > 0) indicates market un-
derreaction (overreaction), reflecting that the market speculative demand is insufficient (excess).

The mainstream literature on market efficiency and noise trading (Figlewski, 1979; Kyle,
1985; Campbell and Kyle, 1988; DeLong et al., 1990b), suggest that the adjustment process
towards market equilibrium consists of two competing forces: one by the informed rational traders
and the other by the pseudo–informed noise traders. The former rationally counters deviations
of prices from equilibrium, hence working as the stabilising force. The latter destabilises the
market by buying when prices are high and selling when prices are low on average, thus driving
prices away from fundamentals. DeLong et al. (1990b) suggest that noise traders may also follow
the trading strategy of rational traders through positive feedback trading, resulting in market
instability. In general, trades of rational traders move prices in the direction of, even if not all
the way to, fundamentals. This dampens noise–driven price movements but does not eliminate
them (DeLong et al., 1990b). Hence, we expect that the heterogeneous trading behaviours of
rational and noise traders will determine the (possibly asymmetric) dynamic price adjustment
process towards equilibrium following market overreaction or underreaction.

3.3 Dynamic Asymmetric Portfolio Shifts Model

The market disequilibrium condition (3.3) can be generalised in the up and the down markets
respectively as follows:

C1+
t =

∆Q+
t

α
= −C3−

t + δUt , (3.5)

C1−
t =

∆Q−
t

α
= −C3+

t + δDt , (3.6)

where δUt and δDt are the (accumulated) market imbalances in the up and the down markets such
that δt = δUt +δDt .13 As before, we redefine IUt (= −δUt ) and I

D
t (= −δDt ) as the dealers’ inventory

imbalances in the up and the down market. C1+
t (C1−

t ) represents the aggregate customer–dealer
order in the up (down) market at the end of round 1 while C3−

t (C3+
t ) is the public’s aggregate

demand for the risky asset at the end of round 3 in the up (down) market.
We modify (2.9) and express the price level at the end of round 3 in up market as

P 3+
t = E

(

P 3
t+1|Ω

3
t

)

+
∆Q+

t

αγ+
−
δUt
γ+

= R+
t + λ+Q+

t −
δUt
γ+

, (3.7)

where P 3+
t =

∑t
j=0

∆P 3+
j , R+

t =
∑t

j=0
∆R+

j , and Q
+
t =

∑t
j=0

∆Q+
j . Here ∆P 3+

j and ∆R+
j are

the price change and payoff increment associated with the up market (∆Q+
j ). γ

+ = (θ+σ2
R|Ω)

−1

and λ+ = (αγ+)−1 capture the risk bearing capacity of the pubic and the price impact of trades
in the up market, respectively. Similarly, the price level at the end of round 3 in the down market
can be written as

P 3−
t = R−

t + λ−Q−
t −

δDt
γ−

, (3.8)

13δUt and δDt can be either positive or negative, implying that both Cases 2 and 3 can be observed in the up
and the down markets.
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where P 3−
t =

∑t
j=0

∆P 3−
j , R−

t =
∑t

j=0
∆R−

j , Q
−
t =

∑t
j=0

∆Q−
j , γ

− = (θ−σ2
R|Ω)

−1 and λ− =

(αγ−)−1. Combining (3.7) and (3.8), we obtain the asymmetric level relationship between the
price and (cumulative) order flows as follows:

Pt = Rt + λ+Q+
t + λ−Q−

t + ξt, (3.9)

where Pt = P 3+
t + P 3−

t , Rt = R+
t + R−

t by construction and ξt = −
(

δUt
γ+ +

δDt
γ−

)

captures the

dealers’ aggregate inventory imbalance. ξt crucially relies upon the (asymmetric) risk–bearing
capacities of the public in up and down markets, γ+ and γ−, respectively. Notice that if the
public is more risk–averse in down market than in up market, their risk–bearing capacity will be
smaller in down market. Accordingly, the public demands a greater price concession to absorb
selling pressure than they do to absorb buying pressure of the same magnitude, indicating a
stronger price impact of selling pressure.

As discussed in the previous subsection, the inventory imbalance of the dealers can persist
beyond a trading day. Hence, we make the following assumption:

Assumption 3.4 ξt follows an AR(1) process:

ξt = ρξt−1 + ut,

where the parameter ρ captures the degree of persistence in the dealers’ inventory imbalance, and
ut is the iid innovation with zero mean and constant variance σ2u.

For convenience, we rewrite Assumption 3.4 as

∆ξt = ψξt−1 + ut, (3.10)

where ψ = (ρ−1) is the parameter measuring the speed of adjustment. Taking the first difference
of (3.9) and using (3.10), we obtain the following error correction representation of the model:

∆Pt = ψξt−1 +∆Rt + λ+∆Q+
t + λ−∆Q−

t + ut, (3.11)

where ξt = P 3
t −Rt−λ

+Q+
t −λ−Q−

t is the error correction term associated with the asymmetric
level relationship (3.9).

There is a growing literature documenting evidence of feedback trading behaviour in both
foreign exchange and other securities markets (Hasbrouck, 1991; Dańıelsson and Love, 2006;
and Evans and Lyons, 2008). Furthermore, Cohen and Shin (2003) suggest that traders tend
to adjust their positions in a series of trades rather than all at once. Hence, we may expect to
observe (possibly) counteractive feedback trading strategies by rational and noise traders over
several periods. In order to explicitly allow for the presence of feedback trading behaviors within
our model, we assume:14

Assumption 3.5 The feedback trading behaviours of agents can be captured by the following
reduced form regression for the interdealer order flow, ∆Qt:

∆Qt =

p
∑

i=1

φPi∆Pt−i +

q
∑

j=1

φ+Qj∆Q
+
t−j +

q
∑

j=1

φ−Qj∆Q
−
t−j + vt, (3.12)

where φPi, φ
+
Qi and φ

−
Qi are feedback trading coefficients and vt is the iid innovation with zero

mean and constant variance σ2v. φPi, φ
+
Qi and φ

−
Qi > 0 (φPi, φ

+
Qi and φ

−
Qi < 0) signal positive

(negative) feedback trading strategy.

14Our feedback trading specification is similar to those in Hasbrouck (1991) and Cohen and Shin (2003). Con-
temporaneous feedback trading, considered by Dańıelsson and Love (2006), is ruled out because P 3

t is set in trading
round 3 of period t by dealers based on their aggregated information from trading round 2, ∆Qt. Thus, if dealers
follow the quoting strategy in (2.5), then ∆Pt = P 3

t − P 3
t−1 is clearly determined by ∆Qt.
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Notice that the interdealer order flow innovation, vt in (3.12), now dictates the market direc-
tion (∆Qt) after controlling for the feedback trading behaviours. Hence, we combine Assumptions
3.3 and 3.5, and express the relationship between ut and vt formally as

ut = ωvt + et, et ∼ iid(0, σ2e), (3.13)

where ω is the market reaction parameter capturing the contemporaneous association between
the dealers’ inventory imbalance and the market direction (the interdealer order flow). vt is
uncorrelated with et by construction. Combining (3.12) and (3.13), we obtain

ut = ω



∆Qt −

p
∑

i=1

φPi∆Pt−i −

q
∑

j=1

φ+Qj∆Q
+
t−j −

q
∑

j=1

φ+Qj∆Q
−
t−j



+ et. (3.14)

Then, substituting (3.14) in (3.11), we obtain the following error correction model called the
dynamic asymmetric portfolio shifts (DAPS) model:

∆Pt = ψξt−1+∆Rt+κ
+∆Q+

t +κ
−∆Q−

t +

p
∑

i=1

πi∆Pt−i+

q
∑

j=1

ϕ+
j ∆Q

+
t−j+

q
∑

j=1

ϕ−
j ∆Q

−
t−j+et (3.15)

where κ+ = λ+ + ω, κ− = λ− + ω, πi = −ωφPi, ϕ
+
j = −ωφ+Qj and ϕ−

j = −ωφ−Qj . It is clear from

(3.15) that κ+ and κ− represent the short–run contemporaneous price impacts incorporating the
correlation between the dealers’ inventory imbalance and the market direction. This shows that
κ+ and κ− can be different from the long–run equilibrium price impacts, λ+ and λ−.

This model explicitly takes into account: (i) the persistent mispricing and the dealers’ per-
sistent inventory imbalance , (ii) the correlation between the dealers’ inventory imbalance and
the market direction, (iii) different feedback trading strategies, and (iv) the asymmetric pric-
ing impacts of signed order flows in the short– and the long–run. In general, under the DAPS
framework, the behavioural trades of noise traders may cause short–run market disequilibrium
while the different risk aversion degrees of the agents result in the asymmetric pricing impacts of
order flows in the up and the down markets. Clearly, when the market underreacts (ω < 0), the
contemporaneous price impacts are smaller than their equilibrium counterparts, i.e. κ+ < λ+

and κ− < λ−, and vice versa. The validity of the DAPS model and its associated assumptions
can be examined through testing several hypotheses in the empirical section.

As discussed in Section 3.2, the feedback trading strategies of rational and noise traders
following market under– and overreactions will determine the pattern and the direction of the
dynamic price discovery process. In theory, the market underreaction (ω < 0) is expected to
be followed by positive feedback trading (i.e. φPj , φ

+
Qj and φ−Qj > 0 in (3.12)) while negative

feedback trading (i.e. φPj , φ
+
Qj and φ−Qj < 0) is expected to follow the market overreaction

(ω > 0). Barberis et al. (1998) and Daniel et al. (1998) make similar predictions and both
adjustment patterns stabilize the market by pushing the price towards its equilibrium. This is
likely to reflect the behaviour of rational traders (arbitrageurs). However, with the presence of
behavioural traders in practice, any dynamic adjustment pattern could happen. For example,
negative feedback trading could follow market underreaction whilst positive feedback trading
immediately after market overreaction may cause the price to overshoot (DeLong et al., 1990b).
These adjustment patterns clearly destabilize the market and move the price further away from
its equilibrium. Generally, in the context of the DAPS model, (3.15), we can predict that πi,
ϕ+
j and ϕ−

j > 0 signal the equilibrium–driven feedback trading strategies of the stabilising force

while πi, ϕ
+
j and ϕ−

j < 0 represents the feedback trading strategies of the destabilising force,
irrespective of whether the market is underreacting or overreacting. Hence, we may conclude that
which of the two competing forces, the noise and the rational traders, prevails in the dynamic
price discovery process will be an important issue determined mainly empirically.
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3.4 Dynamic Price Adjustment Process

We examine in details how the market evolves dynamically towards equilibrium under the DAPS
framework. For simplicity, we suppose that the market is at disequilibrium in period t and
returns to equilibrium after k (≤ T − t) periods. The only new information is given by the
deviation from the fundamental value and the (unobservable) aggregate inventory imbalance of
the dealers in period t. These will then be impounded in the price through the trading process.

Though each dealer has information about his/her own inventory imbalance, δit, all the
dealers still quote common prices in three trading rounds to avoid arbitrage opportunities (Evans
and Lyons, 1999). Therefore, the dealers’ quoting strategies can be written as

P 1
t+j = P 2

t+j = P 3
t+j−1 +∆Rt+j , (3.16)

P 3
t+j = P 2

t+j + λ∆Qt+j . (3.17)

Combining (3.16) and (3.17), we obtain:

P 3
t+j = P 3

t+j−1 +∆Rt+j + λ∆Qt+j . (3.18)

We provide detailed analyses of the adjustment processes in the presence of market underre-
action (Case 2) and overreaction (Case 3) only in the up market. The adjustment processes in
the down market can be similarly analysed with the opposite dynamic price movements.

3.4.1 Dynamic Price Discovery with respect to the Market Underreaction

When the market underreacts initially, the market disequilibrium in period t can be expressed
as (see (3.5))

C1+
t + C3−

t = δU+
t , (3.19)

where δU+
t > 0 is due to the insufficient speculative demand of the public in round 3. Then, the

disequilibrium price level can be written as

P 3+
t = R+

t + λ+Q+
t −

δU+
t

γ+
. (3.20)

Defining the equilibrium price by

P ∗+
t = R+

t + λ+Q∗+
t , (3.21)

where the superscript ‘∗’ indicates the equilibrium level, we can express the mispricing as

P ∗+
t − P 3+

t = λ+(Q∗+
t −Q+

t ) +
δU+
t

γ+
> 0. (3.22)

(3.22) shows that the mispricing consists of the two terms: λ+(Q∗+
t − Q+

t ) > 0 represents
the deviation from fundamentals and δU+

t /γ+ > 0 reflects the unobserved (additional) price
concession required to compensate for the insufficient speculative demand.

We now discuss the possible trading outcomes in period t+1 in the presence of both rational
and noise traders. Denote the aggregate trade orders of rational and noise traders in round 1 by
Ft and Nt ( 6= 0), respectively. Notice that Ft is equilibrium–driven while Nt moves in the same
or the opposite direction to Ft. Thus, the absolute values of Ft and Nt represent the relative
strengths of rational and noise traders in period t. Let at be the time–varying probability that
|Ft| < |Nt|, and bt the time–varying probability that Ft and Nt are of the same direction (i.e.
both rational and noise traders buy or sell). (3.22) suggests that rational speculators will buy
the risky asset to push its price towards its equilibrium level while noise speculators could buy
or sell the risky asset. Depending on the relative strength of the two types of traders (at) and
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Relative Strength Outcome Probability

1. |Ft+1| < |Nt+1|
1a. F+

t+1 +N+
t+1 = C++

t+1 at+1bt+1

1b. F+
t+1 +N−

t+1 = C−
t+1 at+1 (1− bt+1)

2. |Ft+1| ≥ |Nt+1|
2a. F+

t+1 +N+
t+1 = C++

t+1 (1− at+1) bt+1

2b. F+
t+1 +N−

t+1 = C+
t+1 (1− at+1) (1− bt+1)

*Ct+1 denotes the aggregate customer–dealer trade in round 1 of period t+1. Specifically,

C++
t+1 denotes that Ft+1 and Nt+1 are of the same direction, C+

t+1 (C−
t+1) denotes that they

are of opposite directions with the dominance of rational (noise) traders. Pr(|Ft+1| <

|Nt+1|) = at+1 and Pr[N+
t+1] = bt+1).

Table 2: Trading Outcomes Following Market Underreaction

the trading strategies of noise traders (bt), we summarize four possible outcomes in round 1 of
period t+ 1 in Table 2.15

The four outcomes in Table 2 can be grouped into three events as follows:

• Event A: gradual equilibrium adjustment (Case 2b) with Pr (A) = (1− at+1) (1− bt+1),

• Event B: fast but possible over–adjustment (Cases 1a and 2a) with Pr (B) = at+1bt+1 +
(1− at+1) bt+1 = bt+1,

• Event C: counter–equilibrium adjustment (Case 1b) with Pr (C) = at+1 (1− bt+1).

This analysis suggests the following scenarios. First, EventB is independent of the probability
that which traders dominate the market (at). Hence, the higher the probability that noise traders
follow the trading strategy of rational traders (say, bt > 1/2) is, the more likely Event B is to
occur. Second, if noise traders mostly adopt the opposite trading strategy of rational traders
(i.e. bt is quite low), then the market will experience either Event A or Event C. Which of
these two events is more likely to occur crucially depends on who dominates the market (i.e. at).
Moreover, the overall adjustment patterns associated with Events A and B are characterized
by positive feedback trading which mainly stabilises the market. By contrast, Event C implies
the dominance of negative feedback trading by noise traders which destabilises the market by
moving the price further away from its equilibrium.

The adjustments in period t+ j for j = 2, ..., k, can be analyzed similarly. When the market
returns to equilibrium in period t+ k, the following conditions should be satisfied:

P 3
t+k = P ∗+

t and

k
∑

j=0

(

C1
t+j + C3

t+j

)

= 0. (3.23)

Imposing the first condition in (3.23), we obtain:

P 3
t+k − P 3+

t = λ+(Q∗+
t −Q+

t ) +
δU+
t

γ+
(3.24)

Using the identity, P 3
t+k =

∑k
j=1

(∆Rt+j + λ+∆Qt+j), we can rewrite (3.24) as

k
∑

j=1

(

∆Rt+j + λ+∆Qt+j

)

= λ+(Q+∗
t −Q+

t ) +
δU+
t

γ+
. (3.25)

(3.25) shows that the cumulative adjusted risk premia over k periods (the left–hand side com-
ponent) is equal to the price deviation from its fundamental value and the unobserved price

15Trivially, no adjustment is made if Ft+1 = −Nt+1 as in Case 2b.
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concession in period t (to compensate for the insufficient speculative demand). The market re-
turns to equilibrium only if the deviation is corrected and the unobserved price concession is fully
impounded in the price after k trading periods. Furthermore, using (3.19), the second condition
in (3.23) can be expressed as

k
∑

j=1

(

C1
t+j + C3

t+j

)

= −δU+
t , (3.26)

which shows that the dealers can successfully clear their period–t imbalances over k periods.

3.4.2 Dynamic Price Discovery with respect to the Market Overreaction

The market disequilibrium following market overreaction can be expressed as (see (3.5)):

C1+
t + C3−

t = δU−
t , (3.27)

where δU−
t < 0 is due to excess speculative demand. Then, the disequilibrium price level can be

expressed as

P 3+
t = R+

t + λ+Q+
t −

δU−
t

γ+
. (3.28)

Using the equilibrium price level in (3.21), we can express the mispricing as

P ∗+
t − P 3+

t = λ+(Q∗+
t −Q+

t ) +
δU−
t

γ+
< 0, (3.29)

showing that the quoted price in round 3,
(

P 3+
t

)

, deviates from fundamentals by λ+(Q+∗
t −Q+

t ) <

0, and includes an additional concession of δU−
t /γ+ < 0 than required when the speculative

demand is excessive.
It is clear from (3.29) that rational speculators will sell the risky asset to reduce the price to

its equilibrium level while noise speculators either buy or sell the risky asset. Again, depending
on the relative strength of the two types of traders (at) and the trading strategies of noise traders
(bt), we summarize four outcomes in round 1 of period t+ 1 in Table 3.

Relative Strength Outcome Probability

1. |Ft+1| < |Nt+1|
1a. F−

t+1 +N−
t+1 = C−−

t+1 at+1bt+1

1b. F−
t+1 +N+

t+1 = C+
t+1 at+1 (1− bt+1)

2. |Ft+1| ≥ |Nt+1|
2a. F−

t+1 +N−
t+1 = C−−

t+1 (1− at+1) bt+1

2b. F−
t+1 +N+

t+1 = C−
t+1 (1− at+1) (1− bt+1)

*Ct+1 denotes the aggregate customer-dealer trade in round 1 of period t+1. Specifically,

C−−
t+1 denotes that Ft+1 and Nt+1 are of the same direction, C−

t+1 (C+
t+1) denotes that they

are of opposite directions with the dominance of rational (noise) speculators. Pr(|Ft+1| <

|Nt+1|) = at+1 and Pr[N−
t+1] = bt+1).

Table 3: Trading Outcomes Following Market Overreaction

The four outcomes in Table 3 can be grouped into three events as follows:

• Event D: gradual equilibrium adjustment (Case 2b) with Pr (D) = (1− at+1) (1− bt+1),

• Event E: fast but possible over–adjustment (Cases 1a and 2a) with Pr (E) = at+1bt+1 +
(1− at+1) bt+1 = bt+1,

• Event F : overshooting adjustment (Case 1b) with Pr (F ) = at+1 (1− bt+1).
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We have the following scenarios. When most noise traders follow the equilibrium–driven
trading strategy of rational traders (i.e. bt is relatively high), the market is likely to experience
Event E. On the other hand, when more noise traders adopt the counter–equilibrium trading
strategy (i.e. bt is relatively low), Event D (Event F ) is more likely to occur if rational (noise)
traders prevail. Overall adjustment patterns associated with EventsD and E display the negative
feedback trading strategy, mainly stabilising the market. By contrast, Event F implies the
dominance of the positive feedback trading by noise traders, which destabilises the market.

The adjustments in period t+ j for j = 2, ..., k, can be analyzed similarly. When the market
returns to equilibrium in period t + k, both conditions in (3.23) should also be satisfied. Using
similar derivations of (3.25) and (3.26), we obtain:

k
∑

j=1

(

∆Rt+j + λ+∆Qt+j

)

= λ+(Q+∗
t −Q+

t ) +
δU−
t

γ+
, (3.30)

k
∑

j=1

(

C1
t+j + C3

t+j

)

= −δU−
t . (3.31)

(3.30) indicates that the market returns to equilibrium only if both the deviation of the price
from fundamentals and the surplus price concession in period t (due to the excess speculative
demand) are fully discounted from the price after k trading periods. (3.31) suggests that the
public fully reabsorbs the risky imbalances of the dealers in period t over k periods.

3.4.3 Dynamic Price Discovery

We now examine the dynamic adjustment process following the initial mispricing condition in
details. Under the simplifying assumption that the market returns to equilibrium after two
periods (k = 2), we present the alternative adjustment patterns in Figure 2.

Under Case 2 (underreaction), Events A and C are more likely to occur in period t + 1
due to the low speculative demand. On the other hand, under Case 3 (overreaction), Events E
and F are more likely to occur in period t + 1 owing to the excess speculative demand. The
possible over–adjustment in period t+ 1 could change the market condition from underreaction
to overreaction under Case 2 (Event B2) and from overreaction to underreaction under Case 3
(Event E2). Importantly, Events B2 and F reflect the delayed overshooting under Cases 2 and
3, respectively. This is likely to be caused by the trend–chasing behaviour of noise traders (Hong
and Stein, 1999).

Abreu and Brunnermeier (2002) show that the fundamentals work as an anchor around which
the price can fluctuate. Similarly, in our framework, the long–run pricing impacts of order flow,
λ+ and λ−, are determined by fundamentals and may form the upper and the lower bounds (see
Figure 2). When the prices stay between these bounds, the market underreacts (Case 2) and
thus the speculative demand is relatively lower. On the other hand, if the prices are outside these
bounds, the market overreacts (Case 3) and thus the speculative demand is relatively higher. As
a result, the mispricing within these bounds is expected to be more persistent than that outside
these bounds.

We turn to investigate the implications of the feedback trading strategies. In a usual context,
if the price goes up in periods t and t+ 1, then the trading in period t+ 1 is referred to as the
positive feedback trading. If the price goes up in period t but goes down in period t+1, then the
trading in period t+1 is referred to as the negative feedback trading. In this regard, the feedback
trading strategy can be identified by assessing the correlation between the price movements
(return correlation) over two consecutive periods. But, in our dynamic framework, the feedback
trading strategy will be determined with regards to the current mispricing condition. Specifically,
in absolute terms, if the price is below its equilibrium level (the market is underreacting), the
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(a) Adjustment following Case 2 - Up Market (b) Adjustment following Case 3 - Up Market

(c) Adjustment following Case 2 - Down Market (d) Adjustment following Case 3 - Down Market

*B1 and E1 represent fast adjustments while B2 and E2 represent over–adjustments.

Figure 2: The Adjustment Process Following Market Disequilibrium

positive feedback trading will push the price towards its equilibrium whilst the negative feedback
trading will pull it further away from the equilibrium level. On the other hand, when the price is
above its equilibrium level (the market is overreacting), then the negative feedback trading will
bring it downwards to its equilibrium whilst the positive feedback trading will shoot it further
away from the equilibrium level.

First, under Case 2, if the positive feedback trading dominates in period t+1, the price will
move towards its equilibrium (Events A or B1) or overshoot (Event B2). If the negative feedback
trading prevails, the price will deviate further from its equilibrium (Event C). Events A, B1
and C indicate that the market is still underreacting in period t + 1 and the positive feedback
trading in period t + 2 will move the price towards its equilibrium. Second, under Case 3, the
negative feedback trading in period t+ 1 will move the price towards its equilibrium (Events D
or E1) or over–adjust it (Event E2). By contrast, the positive feedback trading in period t+ 1
will cause the price to overshoot (Event F ). At D, E1 and F , the market is still overreacting
and the negative feedback trading in period t + 1 will bring the market towards equilibrium.
These discussions suggest that the positive (negative) feedback trading following the market
underreaction (overreaction) generally drives the market towards equilibrium. Finally, Events
E2 and B2 (over–adjustment) could occur in period t + 1 if noise traders follow the trading
strategy of rational traders as discussed in subsections (3.4.1) and (3.4.2). Recall that at B2 the
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mispricing condition changes from underreaction to overreaction, and vice versa for E2. Hence,
it is the negative (positive) feedback trading in period t + 2 following Event B2 (E2) in period
t+ 1 that will bring the market towards equilibrium.

4 Empirical Application

There is growing evidence that the direct impact of the public information on the exchange rate
is relatively small (Hasbrouck, 1991; Evans, 2002; Evans and Lyons, 2002a; b; 2008).16 Hence, we
follow the Evans and Lyons’s (2002a) approach by assuming that the public information, ∆Rt,
is immediately and directly impounded into the exchange rate, and do not attempt to examine
the direct impact of ∆Rt.

4.1 Data and Methodology

We use the Reuters D2000-1 daily dataset as analyzed by Evans and Lyons (2002a; b; 2008). The
data contains direct interdealer transactions over a 4–month period from 1 May to 31 August
1996 in eight currency spot markets: German mark, British pound, Japanese yen, Swiss franc,
French franc, Belgian franc, Italian lira and Netherlandish guilder, all against the US dollar.
These currency markets are henceforth referred to as DEM, GBP, JPY, CHF, FRF, BEF, ITL
and NLG, respectively.17 The exchange rate on day t is the natural logarithm of the spot rate
(pt) which is the last purchase–transaction price before 4PM (GMT). When day t is Monday,
the price on day t− 1 is the previous Friday’s. The exchange rates are measured as the prices of
the dollar in terms of other currencies such that their increases denote the dollar appreciation.
The daily order flow (∆qt) is measured as the difference between the numbers of the buyer–
initiated and the seller–initiated trades in ‘thousands’ from 4PM on day t − 1 to 4PM on day
t. Dealers buy and sell the dollar for other currencies and negative (positive) order flows signal
net sales (purchases) of the dollar. In what follows, we use ‘up’ and ‘down’ markets to denote
dollar–buying and the dollar–selling pressures, respectively.18

Tables 4 and Figure 3 around here

We provide the summary descriptive statistics in the up and the down markets in Table 4.
Columns 2–4 report the number of positive, negative and zero order flows, displaying that all the
eight currency markets have relatively balanced numbers of positive and negative order flows.
The case of zero order flow is negligible and covers less than 2% on average. Columns 9–10
show the total excess trades (

∑

|∆qt|) and aggregate excess trades (
∑

∆qt), respectively. DEM
has the highest total excess trades, JPY has the largest excess buying orders (

∑

∆qt > 0) , and
CHF has the most excess selling orders (

∑

∆qt < 0). Figures 3 (a)–(h) plot the exchange rate
and cumulative order flow in eight markets, displaying that they move closely together in most
markets with the noticeable exceptions being GBP and BEF in which they seem to diverge at
the end of the sample period. Of the four heavily–traded markets, the dollar–buying pressure
increases towards the end of the sample period in JPY and GBP, but the dollar–selling pressure
mounts in DEM and CHF. We also observe that the mark and the Swiss franc display a clear

16Evans (2002) and Evans and Lyons (2008) find that public news is rarely the dominant source of exchange
rate movement.

17About 90% of the global direct interdealer transactions take place through the system. See Evans and Lyons
(2002a; b) for further details.

18Though we cannot identify the size of individual transactions, the size of the deal is reported as relatively
unimportant for pricing in most empirical studies, e.g. Bjønnes and Rime (2005), Osler et al. (2006), and Reitz
et al. (2011). Furthermore, Killeen et al. (2006) construct the order flows measured both in signed counts and in
values for DEM/FRF, and show that the correlation between two order–flow measures over January - April 1998,
is remarkably high at 0.98.
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appreciating trend against the dollar while the yen exhibits a generally depreciating trend. The
pound seems to appreciate despite the mounting dollar–buying pressure in GBP. Furthermore,
the exchange rates in DEM, CHF, FRF, BEF and NLG exhibit a quite similar pattern.

The asymmetric ARDL model advanced by SYG combines a nonlinear long–run (cointe-
grating) relationship with nonlinear error correction and thus represents a natural means of
estimating the DAPS model. Consider the asymmetric long–run relationship given by

pt = λ+q+t + λ−q−t + ξt, (4.1)

where qt is an I (1) regressor decomposed as qt = q0+ q
+
t + q−t with q+t and q−t being partial sum

processes of positive and negative changes in qt defined by q+t =
∑t

j=1
∆q+j =

∑t
j=1

max (∆qj , 0)

and q−t =
∑t

j=1
∆q−j =

∑t
j=1

min (∆qj , 0), and λ
+, λ− are the asymmetric long–run parameters.

SYG demonstrate that (4.1), can be generalized into the following asymmetric error–correction
form:

∆pt = ψpt−1 + θ+q+t−1 + θ−q−t−1 +

p
∑

j=1

πj∆pt−j +

q
∑

j=0

(

ϕ+
j ∆q

+
t−j + ϕ−

j ∆q
−
t−j

)

+ et (4.2)

where both the long–run equilibrium relationship and the dynamic adjustment process are al-
lowed to vary between the two regimes defined by the sign of ∆qt. Since the NARDL model,
(4.2), is linear in all the parameters including asymmetric parameters, its estimation can be
achieved simply by standard OLS.

In this framework, the nonstandard bounds F–test of the null hypothesis ψ = θ+ = θ− = 0
(no cointegration) can be applied to test for the existence of an asymmetric long–run level
relationship (Pesaran et al., 2001). Similarly, (4.2) nests the following special cases: firstly,
the long–run symmetry with λ+ = λ− = λ where λ+ = −θ+/ψ and λ− = −θ−/ψ; secondly,
the short–run symmetry with a strong form of ϕ+

i = ϕ−
i for all i = 0, ..., q or a weak form of

∑q
j=0

ϕ+
j =

∑q
j=0

ϕ−
j ;

19 and thirdly, both the long– and the short–run symmetries, in which case
(4.2) reduces to the linear ARDL model as considered by Pesaran and Shin (1998) and Pesaran et
al. (2001). All these restrictions can be easily tested using the standard Wald statistics. Hence,
the different forex markets can be categorized into the following four cases: Case (i) the pricing
impacts of order flows on the exchange rate are asymmetric in both the short– and the long–run;
Case (ii) the impacts are asymmetric in the short run but symmetric in the long run; Case (iii)
the impacts are symmetric in the short run but asymmetric in the long run; and Case (iv) the
impacts are symmetric in both the short– and the long–run.

Finally, the traverse between the short–run disequilibrium and the long–run steady state of
the system can be described by the asymmetric cumulative dynamic multipliers:20

m+

h =
h
∑

j=0

∂pt+j

∂q+t
, m−

h =
h
∑

j=0

∂pt+j

∂q−t
, h = 0, 1, 2... (4.3)

where m+

h and m−
h tend to the respective asymmetric long–run coefficients as the horizon tends

to infinity. The ability of the dynamic multipliers to illuminate the traverse between steady
states is likely to prove particularly useful in our analysis of the DAPS model, providing insights
into the (complicated) dynamic price adjustment as described in Section 3.4.

We then aim to address three main issues. First, what are the typical patterns of the dynamic
price adjustment process towards equilibrium after the initial market underreaction or overre-
action? A careful examination of this issue can reveal the nature of the market disequilibrium

19The contemporaneous impacts of order flows, κ+ and κ− in (3.15), can be captured by ϕ+
0 and ϕ−

0 in (4.2).
20For further details see SYG.
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and the agents’ feedback trading strategies.21 The second issue is whether or not the dynamic
adjustment processes are symmetric in up and down markets. There are a growing number of
studies providing evidence in favour of the asymmetric impacts of macro news and order flow
on the exchange rate (Evans and Lyons, 1999; Andersen et al., 2003). Within the DAPS frame-
work, it is straightforward to evaluate the dynamic price impacts of selling and buying pressures,
directly and separately. Finally, we are also interested in the issue of whether the adjustment
patterns are similar across different forex markets.

4.2 Static Models

For comparison with most existing studies, we begin with estimating the static models of the
following forms:

pt = λqt + ξt, (4.4)

pt = λ+q+t + λ−q−t + ξt. (4.5)

As a prelude to the analysis of the cointegrating relationship between the exchange rate and
cumulative order flow, we conduct the augmented Dickey–Fuller unit root test and find that
both pt and qt are convincingly I(1) in all eight markets. This (unreported) finding is consistent
with those reported in Evans and Lyons (2002a) and Berger et al. (2008).

The estimation results for the static linear model, (4.4), presented in Table 7 show that the
pricing impact of cumulative order flow is significant in all eight markets.22 Surprisingly, the
impact of order flow on the exchange rate is negative in GBP, BEF and ITL. Furthermore, the
static linear model also suffers from serial correlation in all eight markets and from incorrect
functional form in four. The Engle–Granger (1987) residual–based cointegration test results
presented in Table 5 show that the linear cointegrating relationship between the exchange rate
and cumulative order flow is confirmed only in NLG.

Tables 5, 6, 7 and 8 around here

Turning to the estimation results for the static asymmetric model, (4.5), reported in Table
8, we find that the coefficients on positive and negative cumulative order flows are significant
and correctly signed in most cases. The only exceptions are negative coefficients on positive
cumulative order flows in BEF and CHF. The static asymmetric regressions also suffer from
serial correlation in all eight markets, and from incorrect functional forms in four. This suggests
that the dealers’ inventory imbalances are clearly persistent. The Engle–Granger cointegration
test results, summarised in Table 6, confirm that there is no (asymmetric) long–run cointegrating
relationship between the exchange rate and cumulative order flow with the only exception being
NLG.

In summary, the estimation and test results for both static models are generally unsatisfac-
tory. Though we find that the static asymmetric model can provide weak evidence in favour of
asymmetric pricing impacts of order flows,23 the Engle–Granger test results do not provide any
evidence in favour of cointegration, which is consistent with the finding of most existing studies,
e.g. Berger et al. (2008).

21Notice that this important issue is rarely analyzed in the literature due to the continuous market–clearing
assumption made in most theoretical models, and the empirical failure to find a (symmetric) cointegrating rela-
tionship between the exchange rate and order flow.

22All coefficients on order flows are multiplied by 100 for clarification as in Evans and Lyons (2002a; b). A
constant is also added to all regression equations.

23The Wald statistic strongly rejects the null of λ+ = λ− in (4.5) in all eight markets.
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4.3 Dynamic Models

We begin with our proposed DAPS model, which does not impose any symmetry restrictions in
the short– and the long–run,24 and test the null hypotheses of no cointegration, short– and long–
run symmetries as described in subsection 4.1. We then select the most preferred specification
for each of the eight markets.

The estimation and test results for (3.15), presented in Table 9, clearly demonstrate that the
long–run pricing impacts of order flows are correctly signed and statistically significant in almost
all markets. The dynamic asymmetric regressions do not display any residual serial correlation
in all eight markets but there is weak evidence of heteroskedasticity in four markets. Notice
that the adjusted R2s

(

R̄2
)

range between 0.26 and 0.76. In particular, the R̄2s in DEM and
JPY are 0.76 and 0.66, respectively, which are remarkably higher than the corresponding R̄2s of
0.64 and 0.46 reported in Evans and Lyons (2002b). Moreover, the R̄2s for other forex markets
are predominantly higher than those reported in Evans and Lyons (2002a). This improvement
clearly demonstrates that the static return regressions employed in Evans and Lyons (2002a; b)
suffer from omitting the significant error–correction term.

Table 9 around here

We now examine the test results. First, we find that the F–statistics (FPSS) reported in Table
9, strongly reject the null of no cointegration in seven markets at the 5% significance level and
in BEF at the 10% level. This confirms that an asymmetric long–run cointegrating relationship
between the exchange rate and cumulative order flow exists in all markets. Second, it is quite
remarkable to find from Table 9 that the Wald statistics, denotedWSR andWLR, reject both the
nulls of short–run and long–run symmetries in the price impacts of positive and negative order
flows for almost all markets. The exceptions are: the long–run symmetry is not rejected in CHF
and NLG while the short–run symmetry is not rejected in GBP and FRF. Based on these test
results, we may categorize the eight markets as follows: DEM, JPY, BEF and ITL belong to
Case (i); CHF and NLG to Case (ii); GBP and FRF to Case (iii); and none to Case (iv).

For comparison purpose, we also provide the estimation and test results for the dynamic
symmetric model. The results reported in Table 10 show that a linear cointegrating relationship
is confirmed only in CHF, FRF and NLG. Importantly, the estimated long–run pricing impacts
of order flows are quite misleading. In particular, they become insignificant in three major
markets (DEM, JPY and GBP) and even incorrectly negative in DEM and GBP. Furthermore,
the error–correction coefficients, measuring the speed of adjustment towards equilibrium, are all
significantly smaller than those obtained from the dynamic asymmetric regressions.25 There-
fore, the poor and misleading results of the dynamic linear model are mainly attributed to the
imposition of invalid symmetry restrictions in the short– and the long–run.

Table 10 around here

Next, we examine the asymmetric pricing impacts of positive and negative order flows on
the exchange rate from Table 9. We find that the long–run coefficients on negative order flows
(associated with down market) are greater than those on positive ones (associated with up
market) in seven markets with the exception being NLG. Such differentials are statistically

24We follow the general–to–specific approach recommended by SYG and select the final lag orders of the asym-
metric ARDL specification, (4.2), by starting with pmax = qmax = 14 and dropping all insignificant stationary
regressors sequentially. Our choice of the maximum lag order is justified by previous studies (Evans and Lyons,
2005, 2006; Reitz et al., 2011), suggesting that information is slowly embedded into the exchange rate.

25Adjustment speeds for JPY and GBP estimated from dynamic symmetric regressions are about 5 and 7 times
slower than those from dynamic asymmetric regressions. Surprisingly, the error–correction coefficient is positive
for DEM when using dynamic symmetric regression. Only for CHF where the null of the long–run symmetry is
not rejected, adjustment coefficients from both models are relatively similar.

23



significant in six markets with the exception being CHF. By construction of our DAPS model,
(3.15), the asymmetry in the long run (equilibrium) price impacts of positive and negative
order flows implies the asymmetry in their contemporaneous price impacts. From Table 9, the
coefficients on ∆q−t are greater than those on ∆q+t in all markets,26 consistent with the prediction
of our theoretical model. Finally, the speed of adjustment towards equilibrium under the dynamic
asymmetric model varies across markets. GBP exhibits the fastest adjustment speed, followed
by NLG, FRF and JPY. Such variation may reflect the different liquidity levels across the eight
markets, and the deviations from equilibrium are expected to be corrected relatively more quickly
in more liquid markets than in less liquid ones.

In sum, we find that both the short– and the long–run pricing impacts of negative order flow
are significantly greater than those of positive one. Recall that the asymmetric pricing impacts
of order flows in the DAPS model stem mainly from the asymmetric risk aversion levels of traders
in up and down markets. Hence, our findings indicate that traders are generally more risk–averse
in down market and respond more strongly to selling pressure. Strong evidence of asymmetric
responses of traders together with the varying speeds of adjustment clearly suggests that the price
discovery processes are quite complicated and heterogeneous across different currency markets,
which we will investigate below.

4.4 Price Discovery Process

We investigate the price discovery process through the dynamic multiplier analysis which enables
us to examine how the price evolves towards equilibrium with respect to the unit impacts of the
daily excess buying and selling orders (measured in thousands).27 We display the results under
Case (i) for all markets in Figure 4 and those under the Cases selected by the testing results in
Figure 5. The test results in subsection 4.3 suggest that Case (ii) be selected for CHF and NLG
and Case (iii) for GBP and FRF. The price discovery processes for CHF and NLG are quite
similar under Case (i) and Case (ii) as is clear in Figures 4 and 5. Furthermore, the estimation
results of the DAPS model show that the adjustment processes towards equilibrium are quite
different under up and down markets in GBP and FRF. Hence, without loss of generality, we
will focus on Case (i) for all eight markets.28

Figures 4 and 5 around here

A careful inspection of Figure 4 suggests several stylised findings. First, the net effects - the
differences between the price impacts of the unit changes in positive and negative order flows -
are mostly negative over all horizons. This implies that the impact of selling pressure is stronger
than that of buying pressure of the same magnitude, thus supporting that traders are likely to be
more risk–averse in the down market. In particular, the long–run price impacts of negative order
flows are about 1.2%, 3.7%, 1.8%, 1.9%, 60%, and 10% larger than those of positive order flows
in DEM, GBP, JPY, FRF, BEF and ITL, respectively. The differentials are relatively negligible
only in CHF and NLG. Second, we find that mispricing is not eliminated immediately but also
persistent in all eight markets. The degree of persistence varies across markets depending on

26Both coefficients are statistically insignificant in BEF.
27The impacts of negative order flow are multiplied by −1 to highlight the difference through the net effects.
28Most microstructure models of the exchange rate belong to Case (iv) where the short– and long–run symmetry

restrictions are imposed (e.g. Evans and Lyons, 2002a; b, 2008; Bjønnes and Rime, 2005; Berger et al., 2008; and
Reitz et al., 2011). Considering that both symmetry restrictions are strongly rejected in most markets, the
symmetric dynamic multiplier effects are likely to be misleading in practice. In particular, we find that the pricing
impact of order flow under Case (iv) is not theory–consistent (negative) in GBP and BEF, and even diverges
infinitely in DEM and ITL. Moreover, the separate imposition of the invalid long–run symmetry under Case (ii) or
the short–run symmetry under Case (iii) is also likely to result in misleading pricing impacts. This is demonstrated
by the long–run divergence under Case in DEM and ITL (ii), and the counter–intuitive price movements under
Case (ii) in GBP and under Case (iii) in BEF. All these results are unreported but will be available upon request.
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the nature of the disequilibrium condition, under– or overreaction. Importantly, the persistent
mispricing clearly indicates the limits of arbitrage as discussed in Abreu and Brunnermeier (2002,
2003), DeLong et al. (1990a; b) and Shleifer and Vishny (1997).

Third, we observe two typical patterns of the price discovery process in the presence of
short–term market disequilibrium. Specifically, the price discovery process following market
underreaction is generally characterised by a sequence of relatively small and gradual adjustments
towards equilibrium. Markets exhibiting this adjustment pattern, denoted Group 1, include
DEM, CHF, BEF and ITL.29 This pattern resembles Events A and C in Figure 2. As discussed
in subsection 3.2, if the underreacting behaviour persists, it may curb market liquidity (decreasing
habit level), resulting in a persistent adjustment process towards equilibrium. Indeed, we find
that the error correction coefficients are relatively small at -0.1, -0.08, -0.16 and -0.28 for DEM,
CHF, BEF and ITL, respectively (see Table 9). Moreover, the gradual adjustment towards
equilibrium observed in Group 1 may suggest that overall the positive feedback trading by
rational speculators dominates, slowly removing mispricing and pushing the price towards its
equilibrium as discussed in subsection 3.4.1. Meanwhile, the detractions observed during the
adjustment process in Group 1 reflect the negative feedback trading of noise traders (Event C).

By contrast, after the initial overreaction the price discovery process is typified by delayed
overshooting, followed by a volatile but faster adjustment episode. GBP, JPY, FRF and NLG
(Group 2) clearly display such short–term instability which is likely to be explained by the excess
speculative demand (increasing habit level) associated with the market overreaction. This finding
is consistent with the discussion in Tobin (1978) and Summers and Summers (1989) that the
excess speculative demand may cause market instability. Notice from Figure 2 that both the
delayed overshooting and the over–adjusting Events (E2 and F ) are clearly observed for Group 2.
These events are likely to result from the trend–chasing behaviour of (momentum) noise traders
as analysed in Hong and Stein (1999) and DeLong et al. (1990b). Overall, it is the negative
feedback trading of rational traders that brings overreacted prices towards equilibrium. Given
the excess speculative demand under the overreacting condition, traders can trade in and out of
positions relatively easily, and thus they may take larger arbitrage positions than they do in a
liquidity–constrained market. Indeed, the error correction coefficients are at -0.44, -0.29, -0.30,
-0.40 for GBP, JPY, FRF and NLG, respectively (see Table 9), supporting our expectation that
the adjustment speeds of Group 2 are relatively faster than those of Group 1.

Finally, the long–run pricing impacts of positive and negative order flows provide the upper
and the lower bounds, respectively, around which the price fluctuates. Recall that the deviation
outside these bounds indicates market overreaction and a relatively high speculative demand
level. On the other hand, the deviation within these bounds signals market underreaction and
a relatively low speculative demand level. The different levels of speculative demand is likely
to imply the different adjustment speeds inside and outside these bounds. In fact, we find that
the deviations outside these bounds are quickly corrected but the deviations within these two
bounds tend to be persistent, consistent with our theoretical discussions in subsection 3.4.3.

5 Concluding Remarks

Based on the portfolio shifts framework of Evans and Lyons (2002a; b), we develop a more
general microstructure model of exchange rate determination. Importantly, our model allows for
persistent mispricing and asymmetric pricing impacts of order flow on the exchange rate. Using
the Reuters D2000–1 trading dataset for eight currency markets, we find strong evidence of a
nonlinear cointegrating relationship between the exchange rate and order flow. In particular, our

29The insignificant contemporaneous price impact and the awkward short–term price movements in BEF may
reflect the fact that it is a sub–market and depends more on the pricing information from the large and leading
market such as DEM than on its own. Evans and Lyons (2002a) suggest that the price in BEF is strongly affected
by order flows in two dominant regional markets, DEM and CHF.

25



results show that the pricing impact of dollar–selling pressure is overwhelmingly stronger than
that of dollar–buying pressure. Such asymmetric impacts support our assumption that traders
are more risk averse in unfavourable markets (selling pressure). Given the growing evidence
that the major impact of macro news on the exchange rate is channeled indirectly through the
trading process (Evans and Lyons, 2005; 2008; Love and Payne, 2008), our finding indicates that
traders seem to respond more strongly to bad news, as also discussed in Andersen et al. (2003).
Thus, the failure to account for such asymmetric relationship between the exchange rate and
fundamentals may be one of the reasons behind the poor performance of macro exchange rate
models. Moreover, the significant difference between the short– and long–run pricing impacts of
order flow clearly indicates short–term market over– or underreactions, further suggesting that
all agents are not necessarily fully rational and arbitrage is limited.

Next, we document that the price discovery process following market underreactions gen-
erally consists of small and gradual adjustments. This reflects the dominance of the positive
feedback trading by rational traders, pushing the market towards equilibrium. By contrast,
the price discovery process after market overreactions displays overshooting and volatile adjust-
ments. We argue that such volatile episode is probably attributed to the expanded speculative
demand caused by market overreactions. In particular, the trend–chasing feedback trading of
noise traders following market overreactions could destabilise the market, resulting in delayed
overshooting impacts and often over–adjustments (DeLong et al., 1990; Hong and Stein, 1999).
Hence, depending on market condition, feedback trading strategies can generate stable or turbu-
lent episodes of adjustment as argued by Tambakis (2009). The instability in liquid market is also
supported by the traditional economic view of liquidity (Keynes, 1935; Tobin, 1978). However,
such instability only exist in the short run and deviations following market overreactions are
corrected faster than those following underreactions. In general, our empirical findings support
our proposed DAPS model.
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Appendix: Tables and Figures

# # #
∑ ∑ ∑ ∑ ∑

Mkt. ∆q+t ∆q−t ∆q0t ∆q
+

∆q
−

∆q+t ∆q−t |∆qt| ∆qt ∆pt
DEM 39 43 0 110.9 -101.0 4326 -4343 8669 -17 -0.037
GBP 50 31 1 43.2 -34.9 2162 -1082 3244 1080 -0.043
JPY 55 27 0 89.2 -72.4 4907 -1954 6861 2953 0.033
CHF 36 46 0 43.5 -65.5 1565 -3011 4576 -1446 -0.041
FRF 41 40 1 21.8 -23.0 894 -919 1813 -25 -0.022
BEF 55 24 3 7.3 -6.3 403 -151 554 252 -0.035
ITL 43 37 2 12.3 -11.4 529 -421 950 108 -0.035
NLG 30 46 6 4.4 -6.2 132 -287 419 -155 -0.036

*‘#’ denote the number of observations. ∆q0t denotes ∆qt = 0.

Table 4: Summary Statistics of the Reuters D2000–1 Dataset

Lag order DEM GBP JPY CHF FRF BEF ITL NLG

0 0.234 -1.881 -1.780 -1.320 -3.256 -2.339 -2.704 -4.009
1 0.194 -1.999 -1.751 -1.245 -3.331 -2.583 -2.710 -4.195
2 0.209 -2.153 -1.802 -1.239 -2.987 -2.432 -3.185 -4.101
3 0.519 -2.118 -1.606 -1.233 -2.992 -2.235 -3.065 -3.647
4 0.301 -1.782 -1.723 -1.361 -2.898 -1.991 -2.843 -3.518
5 0.347 -1.814 -1.712 -1.363 -2.869 -1.895 -2.615 -3.065

*The EGDF regressions include an intercept but not a trend. The 95% critical value for the

EGDF statistic is -3.419.

Table 5: Engle–Granger Cointegration Test Results for the Static Symmetric Model

Lag order DEM GBP JPY CHF FRF BEF ITL NLG

0 -1.846 -3.820 -2.923 -2.501 -2.888 -2.699 -3.964 -4.255
1 -1.954 -3.211 -2.526 -2.534 -3.032 -3.017 -3.285 -4.522
2 -1.667 -3.518 -2.594 -2.549 -2.308 -2.897 -3.372 -4.491
3 -1.469 -3.861 -2.375 -2.505 -2.316 -2.736 -3.414 -4.077
4 -1.580 -3.342 -2.942 -2.507 -2.041 -2.514 -3.064 -4.069
5 -1.570 -3.530 -3.028 -2.454 -2.009 -2.448 -2.856 -3.449

*The EGDF regressions include an intercept but not a trend. The 95% critical value for the

EGDF statistic is -3.857

Table 6: Engle–Granger Cointegration Test Results for the Static Asymmetric Model
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Figure 3: Bilateral Exchange Rates and Cumulative Order Flows
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Figure 4: Dynamic Multiplier Effects - Asymmetric LR & SR (Case (i))
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Figure 5: Dynamic Multiplier Effects - Statistically Selected Cases
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