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Abstract 

This paper examines the forecasting qualities of Bayesian Model Averaging (BMA) over 

a set of single factor models of short-term interest rates. Using weekly and high 

frequency data for the one-month Eurodollar rate, BMA produces predictive likelihoods 

that are considerably better than the majority of the short-rate models, but marginally 

worse off than the best model in each dataset. We observe preference for models 

incorporating volatility clustering for weekly data and simpler short rate models for high 

frequency data. This is contrary to the popular belief that a diffusion process with 

volatility clustering best characterizes the short rate. 
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1 Introduction

The default-free short-term interest rate is one of the most commonly researched economic

variables. It directly influences the short end of the term structure and, thus, has implications

for valuing fixed income securities and derivatives. Furthermore, it is a general reference point

for asset pricing on the basis that expected equilibrium returns on risky assets are expressed in

terms of excess returns relative to the risk free rate. From a macroeconomic perspective, the

short rate serves as an important input for business cycle analysis through the cost of credit,

and its dynamics are to some degree governed by the stance of monetary policy and inflationary

expectations. Given the vital role played by short-term interest rates in both the financial

market and the economy, an enormous amount of work has been directed towards modelling

and estimation of the short rate dynamics in the past three decades. Be that as it may, little

consensus exists amongst financial practitioners about the appropriate choice of a short rate

model both from a theoretical perspective and empirical application.

This paper examines the forecasting qualities of Bayesian Model Averaging (BMA) over a set

of single factor models of short-term interest rates. An important contribution of the paper lies

with the use of both low and high frequency short rate data. Using the same variable observed at

apposite freqencies, we observe marked differences in the specifications of the models exhibiting

the largest predictive likelihoods across the low and high frequencies. The differences in the

preferred models across the two frequencies impact directly on the composition of the BMA

measures of the short rate.

There are many contending short-term interest rate models which have been developed in

the literature. The leading theoretical models specify continuous-time processes for the interest

rate following the seminal work of Merton (1973) on the arithmetic Brownian motion represen-

tation. This specification, however, has been criticised for allowing negative interest rates and

provides only, at best, a rough approximation to the actual process. The negative interest rate

problem is overcome by Vasicek (1977) who imposes a mean-reversion (or stationarity) condi-
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tion in the short rate model. Motivated by the observation that the discrete interest rate data

display strong heteroskedasticity, Cox, Ingersoll and Ross (1985) (CIR) develop the square-root

model of short rates which allows short rate volatility to peak with interest rate levels, the

so-called ’level effect’. Both the Vasicek and CIR models provide closed form solutions and

have been widely applied to discrete time data on short-term interest rates. Nevertheless, more

flexible empirical specifications have been sought with the aim of obtaining an adequate char-

acterisation of the actual short rate process. This has led Chan, Karolyi, Longstaff and Sanders

(1992) (CKLS) to consider estimating the exponent parameter measuring the degree of level

dependence in short rate volatility. They find a point estimate of 3
2
which is in excess of unity,

thus challenging the square-root model of CIR. More recently, evidence based on generalised

autoregressive conditionally heteroskedastic (GARCH) models, developed by Engle (1982) and

Bollerslev (1986), documents high degrees of volatility persistence in the interest rate process.

Brenner, Harjes and Kroner (1994) (BHK) and Koedijk et al. (1994) nest the GARCH and

approximate CKLS models under more general discrete-time specifications. These studies con-

firm the presence of rather extreme conditionally heteroskedastic volatility effects in the interest

rate dynamics which tends to weaken the levels effect relative to the estimates from the CKLS

model.

Although each of these models has been assessed using in-sample forecasts for their adequacy

in characterising the behaviour of short-term interest rates, little is known about their relative

out-of-sample forecast performance.1 While it is possible that a particular short rate model

may forecast interest rate movements more accurately in certain periods than other models, it

is equally likely that its forecasting performance may diminish and be outperformed by another

short rate model in other periods. In other words, the best forecasting model can change over

time. An example is the high point estimate of the elasticity of variance in the CKLS model

1To our knowledge there has been no empirical study which has performed an evaluation of the out-of-sample
forecast performance of short-rate models within a Bayesian framework. The work of Sanford and Martin
(2006) explores a limited number of short-rate models that differ only in the level effect parameter for volatility.
The forecast performance of the models is evaluated using Bayes factors that are, however, constructed using
in-sample information.
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which Bliss and Smith (1998) have argued is attributed to the volatile and high interest rate

levels arising from a change in the Federal Reserve operating procedure from targeting interest

rate levels to monetary aggregates during the 1979-1982 period. Using the CKLS model to

forecast the short rate outside of the 1979-1982 period may not result in accurate forecasts

given that the elasticity of variance estimate is likely to differ outside the aforementioned period.

Another point of contention which often arises in the short rate literature is the linearity of the

short rate drift specification. While a large proportion of the research reports a linear drift

(Chan et al., 1992), others argue to the contrary (Ait Sahalia, 1996; Conley et al., 1997; Jones,

2003) finding nonlinear mean reversion. Bali and Wu (2006) provide evidence that the speed

of mean-reversion for short-term interest rates at extremely high interest rates, such as in the

Volcker (1979-1982), differs relative to that observed during periods of normal rates. It is these

differences in the degree of mean-reversion at different interest rate levels which generate the

nonlinearity in short-rate drift. Given the ambiguity in choosing a representative short-term

interest rate model, and the problem of model and parameter uncertainty, examining a model’s

out-of-sample forecast performance and exploiting the potential gain in forecast accuracy by

combining predictions from individual models are useful avenues of research from a financial

practitioner’s viewpoint.

To address these questions the BMA framework provides a suitable method for assessing the

individual and combined forecast performance of the above mentioned models. The researcher

does not know which of the short-term interest rate models is the true model. Using the

researcher’s chosen prior about which model is true, the posterior probability that a model is

true can be computed. The combined forecast based on all available models can then be obtained

by weighting the model forecasts using the model posterior probabilities. The flexibility offered

by BMA through its judicious combination of information contained in different models has

made it particularly attractive for forecasting. In economics and finance, we have observed

pervasive applications of BMA in different areas including, amongst others, output growth

forecasting (Koop and Potter, 2003), cross-country growth regressions (Doppelhofer et al., 2000;
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Fernandez, 2001), exchange rate forecasts (Wright, 2008), portfolio management (Pesaran and

Zaffaroni, 2004) and stock returns (Avramov, 2002; Cremers, 2002). By and large, all of these

studies have shown that BMA provides improved out-of-sample predictive performance.

In this paper, we employ predictive likelihoods to compare model forecasts. As pointed

out by Geweke and Whiteman (2006), the predictive likelihood which stores the out-of-sample

prediction record of a model forms a basis for rigorous model evaluation. We also assess the

BMA forecast based on five different methods of combining predictions from individual short

rate models, one of which is the simple model average which assumes equal weighting across all

models through time. The other four BMA methods adopt different posterior model probability

assumptions; in principle, they are based on either the marginal likelihood over the estimation

period (or in-sample fit) or the predictive likelihoods computed over the forecast period.

The remainder of the paper is structured as follows. Section 2 provides a survey of the short-

term interest rate models. Section 3 describes the data and the generalised short rate model

which nests twelve short rate models considered in this paper. Section 4 develops a Bayesian

method for estimating parameters of discretely observed short rate processes. It also outlines the

different methods of combining forecasts using BMA. Section 5 discusses the empirical results,

and section 6 concludes.

2 Models of the Short-Term Interest Rate

A standard representation of the short-term interest rate dynamics is described by the following

stochastic differential equation:

drt = µ(rt)dt+ σ(rt)dWt, (1)

which suggests that the change in the short rate can be decomposed into a drift over the

time period (t, t+ dt) - namely, µ(rt)dt - and a random shock represented by an increment of a
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Brownian motion, dWt, with an instantaneous diffusion of σ(rt). It is common in most empirical

work to allow the drift and diffusion to depend on the short rate only.2 In fact, various one-

factor models have been constructed by specifying the drift, µ(rt), and diffusion, σ(rt), of the

short rate in different ways. This is best summarised through the generalised continuous time

short rate model of Chan et al. (1992) which nests many single factor models. Specifically, the

model is

drt = (µ+ λrt)dt+ σrγt dWt, (2)

where all the parameters are generally supposed to be non-negative, apart from λ for which a

negative value induces a mean reverting effect on rt. The key differences between the models is

summarised in Table 1.

− Table 1 about here −

The first two models namely, Merton (1973) and Vasicek (1977) imply Gaussian proceses

with constant diffusion (or volatility). However, unlike the Merton (1973) model the Vasicek

(1977) model is less likely to suffer from the drawback of negative interest rates for certain

appropriate values of µ, λ and σ. Cox, Ingersoll and Ross (1985) relax the constant diffusion

assumption by adopting a square-root term in the volatility of the short rate change. This

process has a reflecting boundary at rt = 0 if 2µ ≥ σ2, thus it precludes interest rates from

being negative. Like the CIR model, the other short rate models define short rate diffusion as

a function of interest rate levels with different elasticity of variance, γ, ranging from 0.5 (Cox

et al., 1985) to 1.5 (Cox et al., 1980). In some of these models, such as the constant elasticity

of variance (CEV) model of Cox (1975) and the CKLS model, the value of γ is estimated from

the data.

All of the short-rate models reported in Table 1 assume a linear drift specification. A linear

2A two factor short rate model has featured in the literature such as the two factor Black, Derman and Toy
(1990) model developed by Bali (2003). We do not consider this model as the focus of our paper is on a class of
single factor short rate models.
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drift implies that the strength of mean reversion is the same for all levels of the short rate. Even

though there is no a priori economic intuition that would suggest the existence of a nonlinear

drift, empirical research has shown that there is evidence of nonlinear drift in short-term interest

rates, that is, mean reversion is stronger for extreme low or high levels of short rate. Ait-Sahalia

(1996) advocates the use of a flexible functional forms to approximate the true unknown shapes

of short rate process. He constructs a general specification test of a short rate model of the form

drt = (α0 + α1rt + α2r
2
t +

α3

rt
)dt+

√
β0 + β1rt + β2r

β3
t dWt, (3)

and finds that the test rejects a linear drift in favour of models that imply no mean reversion for

levels of the short rate between 4 and 22 percent, and strong mean reversion for extreme levels

of the short rate. Conley et al. (1997) adopt the same drift parameterisation as Ait-Sahalia but

keeps the CEV diffusion used by CKLS:

drt = (α0 + α1rt + α2r
2
t +

α3

rt
)dt+ σrγt dWt. (4)

They find that the drift function displays mean-reversion only for rates below 3% or above

11%. Using a different estimation approach and data series but a comparable drift function,

Stanton (1997) demonstrates results that are roughly consistent with those of Ait-Sahalia for

high levels of interest rate. He finds that there is very little mean reversion for all rates below

15% but substantial negative drift for higher rates. Bali andWu (2006), estimate a variant of the

drift specification in (3) which includes a fifth order polynomial. They find that the statistical

significance of nonlinearity in the drift function of the 3-month Treasury yield and the 7-day

Eurodollar rate is reduced with the incorporation of GARCH volatility and the specification of

non-normal innovation. In fact, these added features of the conditional variance and innovation

specification can fully account for the nonlinearity observed in the drift dynamics of the 3-month

Treasury yield and the 7-day Eurodollar rate.
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Another criticism of short rate models in Table 1 is that, while it allows volatility to depend

on interest rate levels, it does not incorporate the observation of volatility clustering in short

rates. Nor does it allow past interest rate shocks to affect current and future volatility. To

accommodate the strength of both the CEV and the GARCH models, Brenner, Harjes and

Kroner (1996) (BHK) consider two ways of combining the two models into a more general form.

One way is to adopt the functional form of the CEV model while allowing interest rate volatility

to follow a GARCH process. Applying the Euler-Maruyama discrete time approximation to (2)

gives

∆rt = µ+ λrt−1 + εt. (5)

Let Ωt−1 represent the information set available at time t−1 and that E (εt|Ωt−1) = 0. Suppose

ht represent the conditional variance of the short-term interest rate changes then E (ε2
t |Ωt−1) ≡

ht = σ2rγt−1. BHK relax the assumption of a constant σ2 by allowing it to vary according to

information arrival process following a GARCH(1,1) model:

σ2
t = β0 + β1ε

2
t−1 + β2σ

2
t−1. (6)

The innovation εt denotes a change in the information set from time t−1 to t and can be treated

as a collective measure of unanticipated news. In (6) only the magnitude of the innovation is

important in determining σ2
t . We refer to this model as the GARCH-CEV model. Another

way is by allowing information from unanticipated news and the one-period lagged interest rate

levels to govern the dynamics of short rate volatility in the following manner:

∆rt = µ+ λrt−1 + εt,

E (εt|Ωt−1) = 0, E
(
ε2
t |Ωt−1

)
= ht,

ht = β0 + β1ε
2
t−1 + β2ht−1 + brγt−1. (7)

We refer to this model as the GARCH-Affi ne model. Under the restriction β0 = β1 = β2 = 0,
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the GARCH-Affi ne model collapses to the CKLS model where b = σ2 and that volatility depends

on interest rate levels alone. Furthermore when b = 0 then there is no levels effect.

Both the GARCH-CEV and GARCH-Affi ne models do not permit short rate volatility to

respond asymmetrically to interest rate innovations of different sign. BHK relax the assump-

tion of a symmetric GARCH process in both models. Specifically, the conditional variance

specification in the GARCH-Affi ne model can be augmented as

ht = β0 + β1ε
2
t−1 + β2ht−1 + brγt−1 + β3ξ

2
t−1, (8)

where ξt−1 = max(0, εt−1). Note that ξt = max(0, ηt) captures the asymmetric response of

short-rate volatility to bad and good news, where bad news that is associated with an interest

rate hike elicits greater volatility than good news of an interest rate cut of the same magnitude.

3 The Generalised Short Rate Model and Data

3.1 The Generalised Short Rate Model

For equation (1) to nest the nonlinear mean-reverting model of Ait-Sahalia (1996) and the

combined GARCH and levels effects model of BHK (1996), we can express (1) in its discrete

time approximation as follow:

∆rt = XitAi4 t+t

√
f (Zit, Bi)4 t, (9)

E(η2
t |Ωt−1) = g(WitGi),

where f(·) and g(·) denote some linear or nonlinear functions describing the relationships be-

tween Zit and Bi, and Wit and Gi, respectively. The drift term XitAi comprises Xit which is

a vector of short-term interest rate variables with its corresponding vector of coeffi cients, Ai.

The diffusion process is made up of two components namely, the elasticity of volatility and the
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news arrival process, each defined by
√
f (Zit, Bi) and g(WitGi), respectively. The Zit comprises

lagged interest rates and Wit is made up of a vector of past conditional variance, squared in-

novations and lagged interest rates. Bi and Gi are coeffi cient vectors. We assume εt follows a

Student’s t distribution with degree of freedom v for v > 2 since the short rate distribution is

known to depart from normality. For the purpose of our analysis we assume a specific function

for both f(·) and g(·) such that (9) is

∆rt =

(
α0 + α1rt−1 + α2r

2
t−1 +

α3

rt−1

)
4 t+ εt

√(
β0 + β1rt + β2r

β3
t

)
4 t, (10)

E(ε2
t |Ωt−1) = ht = γ0 + γ1ε

2
t−1 + γ2ht−1 + γ3ξ

2
t−1 + γ4rt−1,

where the variables and parameters are defined in the same way as discussed in the previous

section. It can be seen that by imposing certain restrictions in the parameters of equation

(10), this generalised short-rate model nests twelve short-rate models which are outlined in

section 2. Table 2 summarises the twelve short rate models which are nested in the generalised

specification. The corresponding parameter restrictions to obtain a specific short-rate model

are also provided.

− Table 2 about here −

3.2 Data Description

The empirical investigation is based on weekly and 15-minute tick observations on the annualised

one-month Eurodollar deposit rates. The weekly data, which are obtained from Datastream,

are sampled from February 1975 to December 2008. The 15-minute tick data are taken from the

one-month Eurodollar futures prices for the period 19 May 2009 to 29 September 2009. This

dataset, which is obtained from Thomson Reuters Tick History, is not available for the same

period as the weekly data. Although the two datasets cover two non-overlapping periods, this
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does not impose any problem since our purpose is to determine whether the forecast performance

of short rate models is sensitive to the data frequency employed. Previous studies on short rates

have used different interest rates ranging from the Eurodollar deposit rate (AitSahalia, 1996;

Bali, 2003; Christiansen, 2008) to the more commonly used Treasury bill rates (Andersen and

Lund, 1997; Koedijk et al., 1997; Suardi, 2008). Furthermore, different maturity periods of the

money market rates and Treasury bill rates have been employed in empirical studies; some use

the 7-day rates while others use the 13-week (or 30-day) rates. Our choice of weekly frequency

is motivated by the problem of discretization bias associated with lower frequency data like

monthly data.3 Stanton (1997) shows that when one-factor diffusion models are estimated with

an Euler approximation, discretization error is negligible with daily and weekly data. Jones

(2003) suggests that augmentation is most important when using monthly data for estimation,

while daily and weekly data produce little discretization bias. Our weekly data period comprises

a shift from historically high interest rates in the late 1970s to early 1980s during the Volcker

monetary regime to low interest rate levels in the latter part of the sample period. The interest

rate data and the first differenced series are presented in Figure 1. Summary statistics for the

data set are provided in Table 3.

- Figure 1 about here -

In Figure 1(a) it can be seen that there is a tendency for the volatility in the interest rate

series to be positively correlated with the current level of the rate. At the start of the sample

period, the association between the level of interest rate and its volatility is visible. This feature

becomes more apparent for the 1979-1983 period during which both the level and volatility of

the rate are high. The level effect is not as obvious after the Volcker monetary regime. These

empirical features tally with those reported in Brenner et al. (1996). The time-varying nature

of the volatility in the sample is indicative that unexpected ’news’might be equally important

3Data augmentation involves manufacturing a higher-frequency dataset than that actually observed, usually
by simulating the path of the stochastic process between observed data points (Gray, 2005).
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in explaining the volatility of interest rates, in addition to the level effect. With the exception

of the Volcker’s monetary regime, the impact of Lehman’s Brothers collapse which panicked

global bankers and caused the Euro deposit rate to sky rocket on September 11, 2008 is most

noticeable. The Euro deposit rate jumped from 2.6% to 6% on that day. Referring to Figures

1(a) and (b), it can be seen that the degree of volatility clustering is less apparent in high

frequency data compared with weekly data, although there is evidence that the stylised feature

of levels effect is still prevalent in high frequency data. Between observations 200 and 300, Euro

deposit rate increases to about 1.7% and this is associated with acute volatility in short rate

changes.

- Table 3 about here -

For both datasets, the time-varying nature of the volatility that is evident in Figure 1 is

associated, in turn, with an empirical distribution for the first differenced data that exhibits

excess kurtosis. The relevant kurtosis statistic reported in Table 3 is significantly greater than

the value of 3 associated with the normal distribution. The positive skewness coeffi cient is also

more than the value of zero associated with the symmetric normal distribution. This is reflective

of a ’leverage’effect of sorts, whereby interest rate rises are associated with higher volatility than

decreases of the same magnitude. The first differenced data exhibit strong correlation as shown

by the Ljung-Box test statistic which overwhelmingly rejects the null hypothesis of no serial

correlation at the fifth and tenth lag order. The interest rate series clearly possesses conditional

heteroskedasticity as indicated by application of a formal fifth and tenth order LM test for

ARCH to the residuals from an AR(10) regression of the interest rate data. The Jarque-Bera

test strongly rejects the null of normality in the interest rate series. The ADF statistics indicate

rejection of the null hypothesis of a unit root for the level of weekly Euro deposit rates at the

5% level. On the other hand, there is evidence to suggest that the 15-minute Euro deposit rates

is non-stationary. However, for changes in the Euro deposit rates the unit root test statistic

rejects the unit root null at the 1% level in both datasets.
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4 Bayesian Inference

Consider a model based on (9) which we denote as model Mi. The likelihood function for Mi

is given by p(RT |θi,Mi), where RT is the set of annualised one-month Eurodollar deposit rates

(r1, r2, ..., rT ) and θi is the parameter vector corresponding to Mi. Given the specification of a

prior density p(θi|Mi), the posterior density of θi is available using

p(θi|RT ,Mi) =
p(RT |θi,Mi)p(θi|Mi)∫
p(RT |θi,Mi)p(θi|Mi)dθi

. (11)

Since εt in (9) follows a Student-t distribution, the likelihood p(RT |θi,Mi) is given by

p(RT |θi,Mi) =
T∏
t=2

p(rt|Rt−1,θi,Mi) =
T∏
t=2

f
(
XitAi4 t,

√
g(WitGi)f (Zit, Bi)4 t, vi

)
, v > 2,

(12)

where Rt−1 is the set of interest rates to time t − 1, and f (µ, σ2, v) is the student’s t density

function with mean µ, variance σ2, and degrees of freedom v.

To provide a more tractable posterior density and facilitate estimation, we adopt the normal

mixture representation of the Student-t distribution.4 Pursuant to this representation, the

independent Student-t density may be represented as a heteroscedastic normal model such that

p(rt|Rt−1,θi,Mi) = N

(
XitAi4 t,

g(WitGi)f (Zit, Bi)4 t

λit

)
, (13)

where the mixing variable, λit, is i.i.d. Gamma distributed

λit|vi ∼ Gamma(
vi
2
,
vi
2

).

The i subscripts for λ and v are omitted hereafter for notational convenience. This repre-

sentation of the independent Student-t density facilitates estimation of the model parameters,

4Represent the Student-t distribution as a normal mixture model converts a non-log concave sampling problem
into a log concave sampling problem (Polson, 1996).
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subject to the introduction of a T -dimensional latent parameter vector λ = (λ1, λ2, ...λT ). The

parameters to be estimated for Mi are, therefore, θi = {Ai, Bi, Gi, λ, v}.

Prior elicitation for θi is reasonably straightforward. In our specification, the prior density

is decomposed as

p(θi|Mi) = p (Ai) p (Bi) p (Gi) p (vi) , (14)

where each density on the right hand side of (14) is proper but fairly uninformative.5

The prior for Ai, p (Ai) , is normally distributed with mean Ai and covariance ΣAi
. Each

element of Bi, being β0i, β1i, β2i and β3i, has the following inverse gamma prior

βji|vβji , sβji ∼ Inverse Gamma(vβji , sβji), (15)

for j = 0, 1, 2, 3. The prior for Bi, p (Bi), is given by the product of these densities. We place

non-informative but proper truncated uniform priors for Gi such that γ0i ∼ U(0, 100), and

γ1i, γ2i, γ3i, γ4i ∼ U(0, 1). Finally, we follow Geweke (1993) in specifying an exponential prior

distribution for v

p(vi) = τ i exp(−viτ i)Ivi , (16)

where Ivi is an indicator function such that Ivi = 1 if vi ≥ 2 and Ivi = 0 otherwise.

4.1 Sampling Scheme

As the posterior density cannot be sampled from using a known distribution, a combination of

the Gibbs Sampler and the Metropolis-Hastings (MH) algorithm is used to obtain draws from

the posterior p(θi|RT ,Mi). The sampling scheme involves iterating through the following five

steps:

1. Draw Ai from p(Ai|θi 6= Ai, RT ,Mi) which is a multivariate normal distribution.

5Each of the densities on the right hand side of (14) is conditional on Mi. This conditioning is omitted here
and in the remainder of this section for notational convenience.
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2. Draw Bi from p(Bi|θi 6= Bi, RT ,Mi). This is an inverse gamma distribution for most of

the models we consider.6

3. Draw λt from p(λt|θi 6= λt, rt,Mi) for t = 1, ..., T . The conditional distribution of λt is a

gamma distribution.

4. Draw Gi from p(Gi|θi 6= γ,RT ,Mi) using a MH algorithm.

5. Draw vi from p(vi|θi 6= vi, RT ,Mi) using a MH algorithm.

Appendix A provides details about the drawing process at each step. Depending on the

restrictions imposed on a particular model, some steps in the sampling scheme may not be

performed. For instance, step 4 is not required for M1 to M10 due to non-existence of GARCH

processes. Table 4 summaries the actual steps taken for each model.

- Table 4 about here -

At the completion of each pass of the sampler a draw θ
(j)
i is obtained and, following conver-

gence, θ(j)
i ∼ p(θi|RT ,Mi).7 We iterate through the sampling scheme until N draws of θi are

available. To eliminate any dependence on the initial conditions of the Markovian chain, the

first N0 draws are discarded. Given
{
θ

(N0+1)
i , ...θ

(N)
i

}
, estimates of moments and other quanti-

ties of functions of θi (assuming they exist) are straightforward to obtain; the expected value of

a real-valued function g(θi) under the posterior distribution may be estimated using the sample

mean of g(θi)

1

N −N0

N∑
j=N0+1

g(θ
(j)
i ). −→

a.s.
Ep(θi|RT ,Mi)g(θi). (17)

6The conditional pdf is not recognsible for modelsM1,M2 andM6, thus we employ a MH alogarithm instead.
7See Geweke (1993) for a proof regarding convergence of the distribution of θ(j)i to the posterior distribution

that is also applicable here.
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4.2 Model Averaging

The marginal likelihood for Mi is the value of the likelihood function after integrating out the

random parameter vector θi pursuant to

p(RT |Mi) =

∫
p(RT |θi,Mi)p(θi)dθi. (18)

Given p(RT |Mi), i = 1, 2, ...J, pairwise comparisons between any two models Mi and Mj may

be undertaken using Bayes factors and posterior odds ratios. Posterior probabilities for each of

the J models under consideration are also straightforward to compute as

p(Mi|RT ) =
p(RT |Mi)p(Mi)∑K
k=1 p(RT |Mk)p(Mk)

, (19)

where p(Mi) is the probability that the data generating process is given byMi before observation

of the dataset RT , and p(Mi|RT ) is the probability that the data generating process is given by

Mi after observation of the dataset RT .

A related measure, the predictive likelihood, is used to determine the distribution of {rT+1, ..., rT+S}

prior to their observation (givenRT andMi), in addition to providing the likelihood of {rT+1, ..., rT+S}

after these values are observed (again, givenRT andMi). The predictive likelihood for {rT+1, ..., rT+S}

is

p(rT+1, ..., rT+S|RT ,Mi) =

∫
p(rT+1, ..., rT+S|θi, RT ,Mi)p(θi|RT ,Mi)dθi. (20)

It is clear from (20) that the predictive likelihood accounts for any parameter uncertainty in the

posterior distribution of θi. In practice, an estimate of p(rT+1, ..., rT+S|RT ,Mi) can be obtained

from the posterior draws
{
θ

(N0+1)
i , ...θ

(N)
i

}
as

p(rT+1, ..., rT+S|RT ,Mi) =
1

N −N0

N∑
j=N0+1

p(rT+1, ..., rT+S|θ(j)
i , RT ,Mi).

We can obtain a model-free estimate of the predictive likelihood by integrating across each
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model
∫
p(rT+1, ..., rT+S,Mi|RT )dMi. Since, there are a discrete number of models, this is

equivalent to weighting each model’s predictive likelihood according to its posterior probability

p(rT+1, ..., rT+S|RT ) =
K∑
k=1

p(rT+1, ..., rT+S|RT ,Mk)p(Mk|RT ). (21)

Updating the posterior probability to generate model-free estimates of the predictive like-

lihood at each time step is straightforward. Given the current posterior probability p(Mi|RT ),

any new information associated withMi is embedded in the one step-ahead predictive likelihood

evaluated after the observation of rT+1. Consequently, the posterior probability p(Mi|RT+1) may

be obtained as

p(Mi|RT+1) = p(Mi|rT+1, RT ) =
p(rT+1|RT ,Mi)p(Mi|RT )∑K

k=1 p(rT+1|RT ,Mk)p(Mk|RT−1)
. (22)

Liu and Maheu (2009) use this recursive BMA approach to forecast realised volatility.

A potential drawback associated with the use of (19) and (22) to construct model probabil-

ities is that the probabilities may place too little emphasis on recent model performance. Since

(19) depends on model performance for all t, a large posterior probability may be associated

with a model that may have performed poorly in the most recent h time periods. This problem

is more likely to appear when T is a large number (as is the case in this paper). An alternative

is to limit the data available for computation of the posterior probability to a subset of recent

predictive likelihoods. This ensures that posterior probabilities are heavily dependent on recent

model performance. Pursuant to this logic, the posterior probability for Mi may be computed

as

p(Mi|RT−h:T ) =
p(R

T−h:T |Mi)p(Mi)∑K
k=1 p(RT−h:T |Mk)p(Mk)

, (23)

where p(R
T−h:T |Mi) =

T∏
t=T−h

p(rt|Rt−1,Mi) depends only on the last h+ 1 predictive likelihoods.
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5 Empirical Application and Results

5.1 Bayesian Model Averaging Application

We consider the performance of the short rates using in-sample and out-of-sample methods.

To undertake the performance analysis, we divide the sample into three periods: a training

period TT , an estimation period TE and a forecasting period TF . The training period spans 9

January 1975 to 31 January 1985 and is used to construct a prior for the estimation period.

The estimation period covers 7 February 1985 to 29 December 2005 and is used to obtain the

posterior density of the parameter vector and an in-sample model comparison. The forecasting

period is 5 January 2006 through to 18 December 2008 and is used to conduct a real time

out-of-sample forecasting exercise.

The empirical application is carried out as follows. We produce N = 20000 posterior draws

for θi using the data spanning the training period TT . We apply a burn-in of N0 = 5000

draws. The prior hyperparameters for the training period are largely uninformative, and

are: 1) the individual elements of Ai ∼ N(0, 100), 2) βji ∼ Inverse Gamma(2, 1)∀j, and 3)

vi ∼ exponential(0.025)Ivi .

The density p(θi|TT ,Mi) based on the training sample is used to construct the prior for θi for

the estimation period TE. This approach is advocated in Geweke (1994) and generates a prior

for the parameters that is almost always well defined irrespective of the prior specification for the

training period (the protoprior). Given the length of the training period, we have observed that

the effect of the choice of protoprior on the posterior density p(θi|TE,Mi) is typically negligible.

Specifically, the hyper parameters Ai and ΣAi
for TE are the posterior means and variances of

Ai based on p(θi|TT ,Mi). To derive the hyperparameters vβji , sβji used in the derivation of the

prior for βji over the estimation period we hypothesise that there is a probability φji of βji

lying beyond βTji, where β
T
ji is the posterior mean of βji estimated using the training sample.
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According to this hypothesis

p(βji ≥ βTi ) = φji

⇐⇒ p

(
vβjisβji
βji

≤
vβjisβji

βTi

)
= p

(
χ2
vβji
≤ χ2

vβji,1−φji

)
= φji. (24)

To satisfy (24) sβji is set to v
−1
βji
βTi χ

2
vβji,1−φji

, where χ2
vβji,1−φji

is obtained from a standard

Chi-square table. The values φji and vβji are determined by the researcher. In this paper, we

assume that vβji = 2 and φji = 0.3 for all j and i. By setting vβji > 1, we impose the restriction

that the first moment of the prior distribution of βji exists. The hyper parameter τ i used to

determine the prior for the degree of freedom parameter v is given by τ i = 1

vTi
, where vTi is the

posterior mean of vi derived from p(θi|TT ,Mi).

The data spanning the estimation period TE coupled with the training-based prior p(θi|TT ,Mi)

is used to obtain the posterior density of the parameters p(θi|TE,Mi). For each draw from

p(θi|TE,Mi) based on the sampler defined in Section 4.1, we generate up to q = 8 step ahead

forecasts together with the associated predictive likelihoods. At each time step, we add an

additional period of data to TE before re-estimating the posterior p(θi|TE,Mi) and generat-

ing another q-step ahead forecasts and the predictive likelihoods. This conventional recursive

procedure continues until 23 October 2008.

As an alternative, we also repeat the exercise conditional on a diffuse prior for θi that

does not depend on the observation of p(θi|TT ,Mi). This provides information concerning the

sensitivity of the forecasts and predictive likelihoods to the specification of the prior. In this

respect, we consider the following non-informative but proper prior specification: each element

of Ai is normally distributed with zero mean and a variance of 100; for βji∀j there is a 99 per

cent probability βji lying beyond β
T
ji given vji = 2; the τ i hyper parameter is set to 1/100.

To evaluate the predictive capacity of Bayesian model averaging, we consider five model

averaging specifications denoted BMA1 to BMA4 and Simple MA. BMA1 is derived from

expressions (19) and (22) with the prior model probabilities computed from the first twenty 1-
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step ahead predictive likelihoods for the 12 models under consideration. The marginal likelihood

used to construct (19) is based on the data covering the period TE and is estimated using the

Modified Harmonic Mean (MHM) method of Gelfand and Dey (1994). The MHM method is

detailed further in Appendix B. The posterior model probabilities are updated as new data

arrives using (22). BMA2 is derived in an analogous fashion to BMA1 but subject to the

adoption of equal prior model probabilities.

The third model averaging specification, BMA3, is based on (23) with equal prior proba-

bilities for each of the 12 models. The element p(R
T−h:T |Mi) in (23) covers only the predictive

likelihoods over the time period TF . In other words, model choices are undertaken only by

reference to the cumulative predictive capacity of the models over the forecast period. Fourth,

BMA4 is akin to BMA3 except a rolling window of the last 20 predictive likelihoods is adopted

(i.e. h fixed at 19). This imposes the restriction that only recent forecasting performance is

considered in determining each model’s weight. Lastly, Simple MA assumes that each model

is always given an equal weight irrespective of its predictive likelihood values.

This exercise was also repeated for the high frequency data across the twelve specified mod-

els. The high frequency training, estimation and forecasting periods (i.e. the high frequency

equivalents of TT , TE and TF ) are 19 May 2009 to mid day of 24 July 2009 (500 observations),

mid day of 24 July 2009 to mid day of 22 September 2009, and mid day of 22 September 2009 to

mid-day of 29 September 2009. This provides two sets of results, including two sets of marginal

likelihoods and posterior model probabilities, which may be used to examine the impact (if any)

of data frequency on both the choice of short rate model and the performance impact of BMA.

5.2 Results for Weekly Data

According to the model predictive likelihoods, modelsM11 andM12 perform best for the weekly

Eurodollar rate over the forecast period. This forecast improvement is observed across each of

the 8 step-ahead periods; consequently, there is little evidence to suggest that alternative models
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perform better at 1-step ahead forecasting relative to 8-step ahead forecasting notwithstanding

the 7-week difference between the forecast horizons. Moreover, as mentioned above, the impact

of the protopriors on the cumulative predictive likelihoods is small, with the order rankings

being identical using either informative or diffuse priors. Consequently we present only the

cumulated log predictive likelihoods for the informative protopriors (see Table 5).8

- Table 5 about here -

A few results are worth highlighting. Holding the diffusion process unchanged and comparing

the cumulated predictive likelihood of models M7 and M3 (or M6 and M2) indicates that a

short-rate model with linear mean-reverting drift is preferred to a non-stationary model. On

the other hand, keeping the linear drift specification constant and allowing the elasticity of

variance parameter to vary across modelsM2 toM5 shows that the model of Cox, Ingersoll and

Ross (1985) performs the worst while the CKLS model yields the highest predictive likelihood

value. M1, which accommodates possible nonlinearities by adopting a more flexible function in

both the drift and diffusion processes, gives rise to a lower predictive likelihood value than the

CKLS model (i.e. M2). The two models that give higher cumulated predictive likelihoods than

M2 are M11 and M12. These are the models associated with BHK.

Perhaps unsurprisingly, M11 and M12 are the only two of the 12 nested models that account

for news arrival and volatility clustering in the model innovations. The remaining models,

which assume a constant variance for model innovations, exhibit consistently lower cumulated

predictive likelihoods than M11 or M12. Consequently, the relative underperformance of models

M1 to M10 is likely to be associated with their inability to account for the periodic presence of

persistently high volatility in the short rate data. The news arrival process, therefore, appears

to be pivotal in generating greater predictive likelihoods at the weekly frequency. This result

corroborates the findings of Brenner et al. (1996) who examine this issue within a frequentist

8The cumulative predictive likelihoods based on diffuse priors are available from the authors upon request.
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framework. The dramatic improvement in the predictive likelihood value of M11 over M2 and

M6 also implies that the specification of a diffusion process which accounts for news arrival and

volatility clustering bears greater importance on short rate model forecast performance than

the stylised feature of levels dependent conditional variance.

These results indicate a marked preference for short rate models with GARCH components

that approximate the news arrival process and the well known presence of volatility clustering in

short rate data (a feature that is also present in equity returns, exchange rates and other financial

data). The results also suggest that the modelling of the news arrival process is paramount in

lower frequency data. It is uncertain, however, whether a similar set of conclusions would be

reached given high frequency data; in other words, is the preference for models accounting for

news arrival and volatility clustering a result of the selected data frequency.

5.3 Results for High Frequency Data

Table 6 presents the results of the exercise undertaken using high frequency data. As with

the weekly data, only the cumulated log predictive likelihoods for the informative priors are

shown (due to their similarity with the cumulated log predictive likelihoods when using diffuse

priors). The results are markedly different to those obtained when using low frequency data.

Model M5, which was associated with the smallest predictive likelihood in the low frequency

data estimation, is the best performing model at each forecast horizon when considering high

frequency data. ModelM5, the Cox, Ingersoll and Ross model, is the most prominent and often

cited paper in the theoretical short rate literature. In turn, the cumulated predictive likelihood

for the best model using low frequency data, model M12, is typically below that of the non-

GARCH models and only slightly above the bottom four non-GARCH models (i.e. M3, M7,M9

and M10).

- Table 6 about here -
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This striking change in results when adopting high frequency data indicates a clear contrast

between the preferred short rate models across high and low frequencies data. The shift in

performance towards the non-GARCH models indicates a decline in the importance of g(WitGi)

when modelling high frequency short rate data. Unlike the low frequency case, the appropriate

characterisation of the news arrival process (and volatility clustering) appears less critical for

high frequency data. Instead, the elasticity of volatility
√
f (Zit, Bi) appears to be the more

important of the two diffusion factors in obtaining greater predictive likelihoods, with models

M8, M4, M2, M6 andM1(all of which incorporate level effects through
√
f (Zit, Bi) but have no

GARCH element) being associated with greater cumulated predictive likelihoods relative toM12

(which incorporates both level effects through
√
f (Zit, Bi) and GARCH diffusion). Even in the

case of the highly favoured M11 model which exhibits higher cumulated predictive likelihood

value than some of the non-GARCH models, it is inferior in its forecast performance than the

CIR model (i.e. M5).

Taken together, these results provide little support for the prevailing consensus in the more

recent short rate literature that earlier models, such as the CEV models, are inadequate in

characterizing the short rate. Instead, the results suggest that this consensus may more appro-

priately be described as applying to the low frequency modelling of short rate data.

5.4 Results of BMA

There have been few applications of BMA to models of the short-rate, perhaps due to intensive

computational requirements to obtain the posterior densities, predictive likelihoods, and pos-

terior model probabilities for a set of short-rate models. Consequently, there is little evidence

regarding the performance impact of the Bayesian weighting of short rate model predictions.

Tables 5 and 6 present the results for BMA using the four approaches specified at the beginning

of this section; BMA1 and BMA2 use posterior model probabilities based on the marginal likeli-

hoods derived over the estimation period, whereas BMA3 and BMA4 are functions of posterior
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model probabilities based only on the predictive likelihoods computed over the forecast period.

The evidence in favour of the predictive benefits of model averaging using BMA1 and BMA2

is fairly weak, with cumulated predictive likelihoods that are clearly lower than the better

performing models (especially for the high frequency data). The catalyst for this appears to be

that the Bayesian model averages based on marginal likelihoods over the entire estimation period

effectively collapse to model selection procedures; both BMA1 and BMA2 have probabilities

close to unity for M12 in the low frequency case and M1 in the high frequency case (and,

therefore, close to zero for the remaining models). The posterior model probabilities therefore

collapse to model selection based on estimation-period (or in-sample) fit. This problem is

typically attributed to large sample size spanning the estimation period and is discussed further

in Amisano and Geweke (2010) who experience a similar issue for BMA based on equity returns

models. The cumulated predictive likelihoods of BMA1 and BMA2 are, however, greater

than those of the simple model averaging approach (albeit only slightly in the high frequency

case) suggesting that the construction of predictions assuming equal model weights is the least

effective averaging procedure for short-rate data, especially at lower frequencies.

In contrast, the posterior model probabilities underlying BMA3 and BMA4, which are

independent of the estimation-period marginal likelihood, do not collapse to unity for any single

model. Figures 2 and 3 show plots of the posterior model probabilities for weekly and 15-minute

data, respectively. For BMA3 the probability ofM11 dominates all models in the case of weekly

data. However, for high frequency data we observe that the probability of M5 exceeds that

of M11 around about the start, the middle and thereafter of the forecasting period. Using

a rolling window of the last 20 periods, we find that the results for BMA4 are qualitatively

unchanged. One noticeable difference in the posterior model probability plots of BMA3 and

BMA4 is that other models like M6 and M8 begin to assume some importance in the BMA

forecast, particularly with weekly data as their probabilities increase substantially in the last

one-third of the forecasting period.

In Tables 5 and 6, the cumulated predictive likelihoods of BMA3 and BMA4 exceed those
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of BMA1 and BMA2 for both datasets. This is also true with the use of informative and

uninformative priors. The performance of BMA3 and BMA4 exceeds that of all but the single

best models across the two frequencies and, even then, are associated with cumulated predictive

likelihoods only slightly below the best model across either frequency. Although the cumulated

predictive likelihoods for BMA3 are greater than those of BMA4, the difference is not significant

suggesting that the primary contribution to forecast improvement for short rate data does not

stem from using a rolling window to determine model weights (at least for forecast periods of

the length we have chosen).

This result indicates the predictive usefulness of restricting the data available to posterior

model probabilities to the period covering the forecast horizon, thereby limiting the weight

attached to the performance of the models over the estimation period. Given such a restric-

tion, the evidence suggests that Bayesian model averaging produces predictive likelihoods that

correspond closely to the better performing models while hedging prediction risk by attaching

non-zero weight to the less likely outcomes generated by the remaining models. Indeed, BMA3

and BMA4 produce forecasts that perform better than all but the best performing models at

every forecast horizon, implying that the performance gain is insensitive to forecast horizon.

6 Conclusion

This paper has investigated the usefulness of BMA for predicting US short-term interest rates

observed at both weekly and 15-minute frequencies. We find that pooling forecasts from dif-

ferent short rate models using BMA yields clear forecast improvements at either frequency. In

particular, the BMA forecasts based solely on recent predictive likelihoods rank above almost

all individual short rate models. There is further evidence that BMA based on recent predictive

likelihoods gives rise to better short rate forecasts than BMA that also uses in-sample data to

determine the posterior probability associated with each model. These results are robust to the

choice of prior for the parameters and the forecast horizon considered.
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An interesting finding not previously documented in the literature is that, for the high

frequency short rates, the results provide little support for the prevailing consensus in the short

rate literature that earlier models not accounting for volatility clustering and news arrival, are

inadequate in characterising short rate dynamics. On the contrary, simpler models such as the

square root constant elasticity variance model of Cox et al. (1985) exhibit the largest predictive

likelihoods for high frequency short rate data. In contrast, our results suggest that accounting

for volatility clustering and news arrival is of primary importance in determining the predictive

likelihood of models applied to lower frequency weekly short rates. Accordingly, the validity of

the prevailing consensus appears to be limited to the case of lower frequency data.

7 Appendix A

Conditional Posterior pdf for Ai

It can be shown that the conditional posterior distribution of Ai, p(Ai|θi 6= Ai, r,Mi) is a

normal distribution

Ai|θi 6= Ai, r,Mi ∼ N(Ai,ΣAi)

with posterior mean and posterior covariance defined as

Ai = ΣAi(X
′
iD
−1
i XÂ+ Σ−1

Ai
Ai)

ΣAi = (X ′iD
−1
i Xi + Σ−1

Ai
)−1

, respectively where

Di =


f(Zi1,Bi)g(Wi1Gi)4t

λ1
0 · · · 0

0
. . . 0

...
. . .

...
0 0 · · · f(ZiT ,Bi)g(WiTGi)4t

λT


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and

Â =
(
X ′iD

−1
i Xi

)−1
X ′iD

−1
i r.

Conditional Posterior pdf for Bi

In general, the conditional posterior pdf for Bi is

p(Bi|θi 6= Bi, r,Mi) ∝ p(Bi)

T∏
t=1

(
λt

f(Zit, Bi)WitGi4 t

) 1
2

exp

(
−

T∑
t=1

λt (∆rt −XiAi4 t)2

2f(Zit, Bi)WitGi4 t

)
.

The distribution of p(Bi|θi 6= Bi, r,Mi) depends on the restriction placed on f (Zit, Bi) . For

M1,M2, M6 and M11, we employed a random-walk Metropolis-Hastings algorithm based on

a normal proposal distribution with variance k.9 For other models the conditional posterior

densities follow an inverted gamma distribution such that

βi|θi 6= βi, r,Mi ∼ Inverted Gamma(vβi , sβi) i = 0, 1, 2

where vβi = T
2

+ vβi , sβ0 = sβ0 +
∑T

t=1
λt(∆rt−XiAi4t)2

2WitGi4t , sβ1 = sβ1 +
∑T

t=1
λt(∆rt−XiAi4t)2

2rt−1WitGi4t and

sβ2 = sβ2 +
∑T

t=1
λt(∆rt−XiAi4t)2

2r
β3
t−1WitGi4t

. Note that β3 in sβ2 is known. Similarly for models with β2 and

β3 only, one could design a two-step sampling scheme. The first step is to draw β2 conditional

on β3 by sampling from the inverse gamma distribution. The second step, which is to draw β3

conditional on β2, employs a normal random-walk Metropolis-Hastings with variance k.

Conditional Posterior pdf for λt

It can be shown that the posterior of λt, t = 1, ..., T, for any given model is a gamma

distribution

λt|θi 6= λ, rt,Mi ∼ Gamma(
v + 1

2
,

(∆rt −XitAi4 t)2

2f(Zit, Bi)WitGi4 t
+
v

2
).

Conditional Posterior pdf for Gi

9The scaling parameter k is equal to 0.5 except for periods when slow mixing occurred. In such cases, we
temporarily adjusted the scaling parameter.
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p(Gi|θi 6= γ, r,Mi) ∝ IGi

T∏
t=1

(
λt

f(Zit, Bi)WitGi4 t

) 1
2

exp

(
−λt (∆rt −XiAi4 t)2

2f(Zit, Bi)WitGi4 t

)
, (25)

where IGi is an indicator function such that IGi = 1 ifWitGi > 0 for t = 1, ..., G. The restrictions

0 < γ1 + γ2 + γ3 + γ4 < 1, 0 < γ0 < 100 and 0 < γ1, γ2, γ3, γ4 < 1 are imposed.

The conditional posterior pdf for Gi is intractable so the independent Metropolis-Hastings

algorithm is used to obtain draws of Gi. In this respect, we use a normal proposal distribution

with the mean and variance parameters determined as the mode and the negative inverse Hessian

of (25).

Conditional Posterior pdf for v

The conditional posterior density for the degree of freedom parameter is

p(v|θi 6= v, r,Mi) ∝ Γ
(
v
2

)−T (v
2

)Tv
2 exp

(
v
2

T∑
t=1

(log(λt)− λt)− τ)

)
.

To draw from the conditional density we use a random-walk Metropolis-Hastings algorithm

based on the normal proposal distribution with variance k.10 A rejection condition was imposed

such that only values of v greater than two were accepted. A Griddy Gibbs sampler (Ritter and

Tanner, 1992) may also be used to draw p(v|θi 6= v, r,Mi). From an implementation point of

view, however, we found that the random-walk Metropolis Hastings algorithm performed better

than Griddy Gibbs for the data used in this paper.11

8 Appendix B

In our paper, the marginal likelihoods cannot be computed analytically. To this end, we have

adopted the Modified Harmonic Mean (MHM) method of Gelfand and Dey (1994) to obtain

the marginal likelihoods. The advantage of this approach is that it uses the posterior para-

10Where mixing was slow, the variance parameter k was temporarily adjusted.
11The large sample size caused processor overflows when computing the densities required by the Griddy Gibbs

procedure.
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meter draws to obtain the marginal likelihood and can be employed alongside most sampling

techniques. The inverse of the predicted marginal likelihood is computed as:

p̂(FT )−1 =
1

J

J∑
j=1

f(θ(j), ρ(j))

p(θ(j), ρ(j))p̂(z|θ(j), ρ(j))
, (26)

where f(θ, ρ) is a density function with supported constraint within the posterior support of

(θ, ρ). f(θ, ρ) ideally approximates the posterior pdf. Geweke (1999) suggests a truncated mul-

tivariate normal distribution with different sets of truncation values such that δ ∈ (0, 1) for

f(θ, ρ) :

θ ∼ N

(
θ̂
ρ̂
, Σ̂θ,ρ

)
I(Γ)

(27)

where θ̂ = J−1
J∑
j=1

θ(j), ρ̂ = J−1
J∑
j=1

ρ(j),and Σ̂θ = J−1
J∑
j=1

[
θ(j) − θ̂
ρ(j) − ρ̂

] [
θ(j) − θ̂
ρ(j) − ρ̂

]′
. I(Γ) is an

indictor function such that I(Γ) = 1 if
([

θ(j) − θ̂
ρ(j) − ρ̂

]′
Σ̂−1
θ

[
θ(j) − θ̂
ρ(j) − ρ̂

])
≤ q where q is such that

P (χ2
a < q) = δ and a is the dimension of (θ, ρ). Note that in computing f(θ, ρ) an additional

normalising constant δ is added to ensure f(θ, ρ) integrates to unity.
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Table 1. Parameter Restrictions for Various Interest Rate Models
Model Specification µ λ γ
Merton (1973) drt = µdt+ σdWt 0 0
Vasicek (1977) drt = (µ+ λrt)dt+ σdWt 0
Cox, Ingersoll and Ross (1985) drt = (µ+ λrt)dt+ σ

√
rtdWt 1/2

Dothan (1978) drt = σrtdWt 0 0 1
Geometric Brownian Motion (GBM) drt = λrtdt+ σrtdWt 0 1
Brennan and Schwartz (1980) drt = (µ+ λrt)dt+ σrtdWt 1
Cox, Ingersoll and Ross (1980) drt = σr

3/2
t dWt 0 0 3/2

Constant Elasticity of Variance, Cox (1975) drt = λrtdt+ σrγt dWt 0

Table 2. Summary of Short-Rate Models Nested in the Generalised Model
Model XitAi f(Zit, Bi) g(Wit, Gi)

M1: Ait-Sahalia (1996) α0 + α1rt−1 + α2r2t−1 + α3
rt−1

β0 + β1rt−1 + β2r
β3
t−1 1

(γi = 0 , ∀i = 0, 1, 2, 3, 4, 5)

M2: CKLS (1992) α0 + α1rt−1 β2r
β3
t−1 1

(α2=α3=0) (β0 = β1 = 0)
M3: Vasicek (1977) α0 + α1rt−1 β0 1

(α2=α3=0) (β0 = β2 = 0)
M4: BS (1980) α0 + α1rt−1 β2r

2
t−1 1

(α2=α3=0) (β0 = β1 = 0, β3 = 2)
M5: CIR (1985) α0 + α1rt−1 β1rt−1 1

(α2=α3=0) (β0 = β1 = 0, β3 = 1)

M6: CEV Cox (1975) α0 β2r
β3
t−1 1

(α1=α2=α3=0) (β0 = β1 = 0)
M7: Merton (1973) α0 β0 1

(α1=α2=α3=0) (β1 = β2 = 0)
M8: GBM α1rt−1 β2r

2
t−1 1

(α0=α2=α3=0) (β0 = β1 = 0, β3 = 2)
M9: Dothan (1978) 0 β2r

2
t−1 1

(αi=0 ∀i = 0, 1, 2, 3) (β0 = β1 = 0, β3 = 2)
M10: CIR VR (1980) 0 β2r

3
t−1 1

(αi=0 ∀i = 0, 1, 2, 3) (β0 = β1 = 0)

M11: BHK (1996) α0 + α1rt−1 r
β3
t−1 ht = γ0 + γ1ε

2
t−1 + γ2ht−1 + γ3ξ

2
t−1

(α2=α3=0) (β0 = β1 = 0, β2 = 1) (γ4 = 0)
M12: BHK (1996) α0 + α1rt−1 1 ht = γ0 + γ1ε

2
t−1 + γ2ht−1

(α2=α3=0) (β0 = 1, β1 = β2 = 0) +γ3ξ
2
t−1 + γ4rt−1

Note: The equalities in parenthesis are parameter restrictions of the specific functions.
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Table 3. Summary Statistics of ∆rt
(a)Weekly 1-Month Eurodollar Deposit Rates
Mean -0.0048 Q(5) 46.548 (0.000)
Std. dev 0.3877 Q(10) 54.843 (0.000)
Skewness 0.8807 LM(5) 228.725 (0.000)
Kurtosis 34.2005 LM(10) 233.227 (0.000)
JB 86638.7 (0.000) ADF (rt) -3.590 (0.031)

ADF (∆rt) -20.477 (0.000)
(b) 15-Minute 1-Month Eurodollar Future Rates
Mean -0.0002 Q(5) 89.964 (0.000)
Std. dev 0.0180 Q(10) 120.703 (0.000)
Skewness 5.6584 LM(5) 20.937 (0.001)
Kurtosis 134.1275 LM(10) 31.382 (0.000)
JB 981406.5 (0.000) ADF (rt) -3.118 (0.103)

ADF (∆rt) -12.999 (0.000)
Note: Q(5) and Q(10) are the Ljung-Box test statistics for serial correlation in short rate changes

of order 5 and 10, respectively. LM(5) and LM(10) denotes the ARCH test of the residuals from an

AR(10) regression of the interest rate data for lag order 5 and 10, respectively. JB is the Jarque-Bera

test of normality of short rate distribution. ADF denotes the Augmented Dickey Fuller test statistic.

Figures in parenthesis are p-value.

Table 4. Sampling Scheme for Interest Rate Models
Model Step

1 2 3 4 5

M1 Ait-Sahalia (1996) X X X X
M2 CKLS (1992) X X X X
M3 Vasicek (1977) X X X X
M4 BS (1980) X X X X
M5 CIR (1985) X X X X
M6 CEV (1975) X X X X
M7 Merton (1973) X X X X
M8 GBM X X X X
M9 Dothan (1978) X X X
M10 CIR VR (1980) X X X
M11 BHK1 (1996) X X X X X
M12 BHK2 (1996) X X X X
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Table 5. Cumulated log predictive likelihoods - weekly data
Forecast Steps
1 2 3 4 5 6 7 8

M1 -18.879 -19.495 -20.498 -20.408 -21.906 -25.672 -27.385 -29.341
M2 -8.6556 -9.4788 -10.823 -10.545 -12.41 -16.709 -18.698 -21.192
M3 -29.503 -29.718 -30.129 -30.183 -31.179 -33.695 -34.825 -35.743
M4 -11.403 -12.028 -13.446 -13.229 -15.687 -21.243 -23.299 -26.19
M5 -93.351 -93.385 -93.675 -93.517 -94.474 -97.873 -98.446 -100.05
M6 -8.6281 -9.6076 -11.123 -10.971 -12.969 -17.197 -19.143 -21.728
M7 -29.828 -30.108 -30.707 -30.833 -31.842 -34.123 -35.066 -35.923
M8 -11.562 -12.25 -13.856 -13.683 -16.164 -21.741 -23.819 -26.819
M9 -59.917 -60.56 -61.997 -61.841 -64.407 -69.911 -71.932 -74.85
M10 -83.49 -84.015 -85.511 -85.202 -88.005 -94.128 -96.179 -99.398
M11 2.957 1.9864 0.93958 0.99976 -1.2991 -6.361 -8.7797 -11.639
M12 -2.165 -2.6759 -3.345 -3.2197 -5.0228 -9.0488 -10.992 -13.076
BMA1 -2.169 -2.6799 -3.349 -3.2236 -5.0268 -9.0528 -10.996 -13.08
BMA2 -2.1892 -2.7 -3.369 -3.2436 -5.0469 -9.0728 -11.016 -13.1
BMA3 2.4243 1.4603 0.43705 0.51559 -1.7663 -6.8017 -9.2036 -12.047
BMA4 0.69986 -0.15976 -1.5765 -1.4172 -3.6501 -8.8944 -11.171 -14.258
Simple MA -24.811 -25.365 -26.397 -26.274 -28.09 -32.187 -33.935 -36.034
Note: Models M1 to M12 are defined in Table 2. BMA 1 to 4 denote the four methods of pooling

short rate forecasts, while Simple MA is a BMA method which assumes equal model weight.

Table 6. Cumulated log predictive likelihoods - high frequency data
Forecast Steps
1 2 3 4 5 6 7 8

M1 198.76 198.85 198.83 198.94 198.92 198.95 200.78 200.72
M2 204.66 204.68 204.7 204.75 204.8 204.83 207.13 207.13
M3 185.92 185.91 185.92 185.92 185.9 185.91 187.27 187.26
M4 205.79 205.82 205.86 205.91 205.96 205.99 208.3 208.31
M5 210.59 210.6 210.62 210.66 210.69 210.73 213.14 213.14
M6 204.47 204.46 204.43 204.44 204.44 204.45 206.59 206.59
M7 186.04 186.04 186.04 186.04 186.03 186.03 187.36 187.36
M8 206.13 206.11 206.08 206.09 206.07 206.07 208.24 208.25
M9 180.43 180.4 180.35 180.34 180.3 180.29 182.44 182.44
M10 186.76 186.71 186.61 186.59 186.55 186.52 189.05 189.04
M11 207.75 208.24 208.48 208.61 208.75 208.89 208.97 209.06
M12 188.76 188.93 189.01 189.04 189.05 189.08 190.59 190.59
BMA1 198.76 198.85 198.83 198.94 198.92 198.95 200.78 200.72
BMA2 198.76 198.85 198.83 198.94 198.92 198.95 200.78 200.72
BMA3 209.08 209.25 209.34 209.45 209.55 209.89 210.94 211.01
BMA4 208.8 209 209.04 209.04 208.97 209.23 210.04 209.38
Simple MA 198.42 198.49 198.51 198.55 198.57 198.59 200.12 200.12
Note: See note to Table 5.
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Figure 1 Plots of Weekly and 15-minute Short Rates

(a) Weekly short rates (1 February, 1975 to 31 December, 2008)

(b) 15-minute short rates (19 May to 29 September, 2009)
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Figure 2. Plots of posterior model probabilities of BMA3 and BMA4 for weekly

data

BMA3

0

0.2

0.4

0.6

0.8

1

1 11 21 31 41 51 61 71 81 91 101 111 121 131

M11 M12

BMA4

0

0.1

0.2

0.3

0.4

0.5

0.6

1 11 21 31 41 51 61 71 81 91 101 111 121 131

M6 M8 M11 M12

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 11 21 31 41 51 61 71 81 91 101 111 121 131

M1 M2 M4

0

0.01

0.02

0.03

0.04

0.05

0.06

1 11 21 31 41 51 61 71 81 91 101 111 121 131

M3 M7

Note: We only plot the model probabilities that are non-zero.
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Figure 3. Plots of posterior model probabilities of BMA3 and BMA4

for high frequency data
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