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Abstract 

Stated preference discrete choice experiments are being increasingly used to value the 

quality of health care services. To date in the health economics literature, discrete choice 

experiments have used only a relatively small number of attributes due to concerns about 

task complexity, non-compensatory decision rules, simplicity of experimental designs, 

and the costs of surveys.  This may lead to omitted variable bias and reduced explanatory 

power when attributes have been pre-selected from a longer list.  There may be situations 

where it is desirable to include a longer list of attributes, such as attaching weights to 

quality of life instruments to obtain single index scores.  The aim of this paper is to 

examine the feasibility of using a ‘blocked attribute’ design in a DCE with 11 attributes.  

This method allocates the 11 attributes across three separate experimental designs and 

pools the data for analysis.  We examine this issue in the context of attaching weights to a 

disease specific quality of life instrument used to prioritise orthopaedic waiting lists in 

Victorian hospitals. We produce a single index measure of utility for health states of 

patients, bounded between zero and one.  The use of such a design seems feasible, 

although issues remain to be resolved about how the ranking should be used in practice to 

set priorities for waiting lists. 
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1. Introduction 

Stated preference choice experiments are now regularly used to value the quality of 

health care services and examine individuals’ preferences over different ‘packages’ of 

health care (Ryan and Gerard, 2003). Respondents are presented with choice sets in 

which they choose between different scenarios (alternatives) consisting of several 

attributes that describe each scenario, with levels of the attributes varying between 

scenarios.  The alternatives that the respondent chooses reveal their preference for the 

attributes that describe these alternatives through the trade-offs that are being made.  This 

paper applies a stated preference choice experiment to orthopaedic (knee and hip) surgery 

in order to elicit which attributes are most important in prioritizing patients on a waiting 

list.  The alternatives represent health states and the 11 attributes include level of pain, 

financial difficulties, and enjoyment of life.  Since 11 attributes are generally considered 

too many, the goal of this paper is to use a “blocked” design in which the attributes are 

split over three separate choice experiments and the data from these pooled to establish 

the relative ranking of all attributes.  Since separating the attributes and then pooling the 

data has not been done before, issues surrounding this approach are discussed.  However, 

it is an important new method to consider since it is not always feasible or desirable to 

reduce the number of attributes used.   

 

In health care, the number of attributes has been kept to relatively small numbers (Ryan 

and Gerard, 2003), and 11 attributes would generally be considered too many.  There are 

two reasons for this.  The first is that with a large number of attributes, individuals may 

not make trade-offs but instead use other decision heuristics or lexicographic decision 

rules.  This violates a key assumption of economic choice theory that rules out the 

interpretation of the data as utilities (Scott, 2002).  A small number of attributes reduces 

task complexity for respondents and is more likely to enable compensatory rather than 

non-compensatory decision rules to be used.  However, studies have shown that the 

presence of non-compensatory decision making is unlikely to influence regression results 

(Johnson and Meyer, 1984; Ryan and Ameya-Ameya, 2004).   
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A second reason for having a small number of attributes is more pragmatic in that the 

fewer permutations of attributes and levels, then the smaller the number of choice sets 

that need to be presented to respondents, and therefore the smaller the sample size 

required to complete a given number of choice sets.  This again reduces the cognitive 

burden of the choice tasks and introduces the possibility that interaction and higher-order 

effects can be estimated. It is also not always possible to generate full or fractional 

factorial designs with a large number of attributes from existing software packages and 

design catalogues (Bradley et al., 2001; Hahn and Shapiro, 1966).  

 

In practice, the number of attributes included in most choice experiments are usually pre-

selected from a larger list and are judged to be the most ‘salient’ or ‘important’ using 

evidence from the literature, from focus groups, or by including attributes relevant to 

changes in policies that have not yet been introduced. Some evidence has shown that 

results can be sensitive to the inclusion or exclusion of attributes, so that pre-selection of 

a sub-set of attributes may cause bias in the estimates, particularly if an excluded attribute 

is correlated with an included attribute or makes a significant contribution to the 

explanatory power of the model (Louviere and Islam, 2004).  Often it is only through 

careful piloting and focus group work that such bias can be minimised, although there is 

little guidance on how such piloting should be conducted.  A further method that has been 

used to reduce such bias is to ask respondents to assume that all other attributes are the 

same across choices, i.e. that their difference is zero.   

 

The aim of this paper is to undertake a choice experiment in the situation where there are 

11 attributes, ten of which have four levels, and one has three levels.  Instead of 

presenting each respondent with all 11 attributes, the attributes are ‘blocked’ or allocated 

across three experimental designs.  Blocking is usually used to reduce the number of 

choice sets that each respondent has to answer whereas we use it to reduce the number of 

attributes.  The use of a ‘blocked attribute’ design raises a number of methodological 

issues that will be examined in this paper. 
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The context of this study is in attaching weights to a disease specific quality of life 

instrument which is used to prioritise individuals on a waiting list for orthopaedic surgery 

(hip or knee replacement). There is a great need for evidence-based prioritisation of 

individuals on elective waiting lists as in many countries waiting lists exist and 

progression along the list is somewhat haphazard and not based on clinical or social need 

(Dreinhoefer et al., 2006; Quintana et al., 2000; Dolin et al., 2003).  Prioritisation systems 

have been developed in some countries, notably New Zealand, Canada and the UK and 

were developed using clinical consensus and Delphi techniques (Hadorn and Holmes, 

1997; Arnett and Hadorn, 2003; Woolhead et al., 2002).  They have resulted in modest 

improvements in access and equity for people requiring joint replacement probably due to 

limited concordance between actual clinical need and queue positioning (Lack et al., 

2000; Coleman et al, 2005).   

 

In this paper the prioritisation is based on a disease-specific quality of life tool containing 

11 quality of life questions (Multi-attribute Arthritis Priority Tool – MAPT).  This was 

used to assess quality of life and therefore the need for joint replacement surgery for six 

hospitals in Victoria, Australia.  The 11 dimensions (see appendix) were organised in 

Guttman scales with three to four levels of clinically defined health states with increasing 

severity.  Having a large number of quality of life dimensions is typical in many generic 

and disease specific quality of life instruments.  There is a small but growing literature on 

the use of choice experiments to generate utilities across different descriptions of health 

related quality of life (McKenzie et al, 2001; Ryan et al., 2006).  Choice experiments 

provide a potentially more efficient method of producing utilities compared to other 

methods such as time-trade-off (TTO) and standard gamble (SG).  Choice experiments 

are more firmly grounded in economic theory (random utility theory), are less costly to 

administer since a postal survey can be used, and are arguably easier to understand and 

complete. However, choice experiments to date have typically been based on a relatively 

small number of attributes and so their suitability to providing utility weights when there 

are many dimensions is an important issue to explore.   
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The rest of the paper is organized as follows.  Section 2 describes the questionnaire and 

how the three designs were generated from it.  Section 3 outlines the separate regression 

models of the three designs and the pooled model and deals with issues that may arise 

from pooling the data.  Section 4 explains the empirical approach.  Section 5 presents the 

results of the application to the orthopaedic waiting list.  Section 6 discusses and Section 

7 concludes.   

 

2. Questionnaire design 

The 11 quality-of-life questions (shown in the Appendix) were allocated across three 

different experimental designs.  Some of the questions captured different components of 

the same underlying concept, which may result in dimensions being dependent on one 

another.  This is another common feature of quality of life instruments.  This issue was 

partly overcome through the allocation of questions to the three experimental designs. 

For example, questions one to three are all about pain, and so one question was allocated 

to each of the three designs.  Similarly, questions four and five are both about ‘looking 

after yourself’, so these were also included in different designs.  Finally, questions eight 

and nine are about financial difficulties and so these were included in separate designs. 

This ensured there was orthogonality between otherwise similar questions. 

 

Five questions (out of the eleven) were used in each design with two questions included 

in all three designs (questions six and ten).  Within each design, trade-offs will be made 

relative to these two attributes. It was important to include two common attributes rather 

than one to ensure that a common trade-off was being made in each design. In the 

analysis, this will help to standardise the regression coefficients against the average effect 

of the two common attributes.  This therefore reduces any bias caused by the inclusion of 

different sets of attributes in each experimental design. 

 

Each design had a possible 45 = 1,024 different combinations of attribute levels (5 

attributes with 4 levels each).  Note that one design that includes eleven questions with 

four levels each would have resulted in a possible 411 = 4,194,304 combinations, 

considerably larger than the full factorial with just five attributes.  Since it is not possible 
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to present all 1,024 scenarios to each respondent, a fractional factorial design was 

produced generating 16 scenarios for each design (Bradley et al., 1991).  This orthogonal 

design assumed that there were no interaction effects between the attributes.   

 

In each design, the levels of one scenario (Scenario A) remained fixed and the remaining 

15 scenarios were compared to it, giving 15 discrete choices.  The fixed Scenario A was 

chosen out of the 16 that were generated for the orthogonal design, because it typically 

had two attributes at each of the extremes (i.e., one attribute level was 1, another attribute 

level was 4), and the remaining 3 attributes were in between.  The use of a fixed scenario 

makes the choice task easier to complete and assists with meeting some of the key design 

principles discussed below. 

 

The pairing of the 15 scenarios with the fixed scenario has to satisfy a number of design 

properties to ensure the choice design is efficient (Zwerina et al., 1996; Carlsson and 

Martinsson, 2003). Orthogonality (when attribute levels vary independently of each 

other) is satisfied when one attribute set at a certain level is independent of the levels of 

other attributes.  In fact, each attribute in the fixed scenario is always compared to all 

three remaining attribute levels within each design.  Level balance (when the levels of 

each attribute appear with equal frequency) is satisfied by using a fractional factorial 

design that generated equal frequencies of each attribute.  Minimal overlap (when the 

alternatives within each choice set have non-overlapping attribute levels) is satisfied 

because each of the levels appear with equal frequency and the fixed scenario is always 

compared to all three remaining attribute levels.  This results in minimal overlap because 

it minimizes the number of times that the difference between the fixed scenario and all 

other scenarios in each design is zero.     

 

Respondents were asked to choose which of the two patients (represented by the two 

scenarios) should be given priority for a hip/knee joint replacement.  The respondents 

were 96 of the approximately 150 arthroplasty surgeons in the state of Victoria. 65 

surgeons filled out the questionnaire at a dedicated session at the Victorian branch 



 8

Australian Orthopaedic Association annual meeting, and the remaining 36 responded by 

mail.  Thirty respondents completed all three designs, i.e. all 45 choices. 

 

3. Regression models 

The ‘blocked attribute’ design assumes that individuals will have the same preferences 

over the 11 attributes if they are presented together compared to if they are presented in 

blocks.   For each block of attributes (i.e. each experimental design), respondents were 

asked to assume that all other dimensions of quality of life were the same for the two 

patients.  This is a standard although untested method to attempt to control for omitted 

variable bias. This is equivalent to assuming that the differences between the levels of the 

omitted attributes are zero. Each experimental design can be used to estimate a separate 

regression model: 

    

   11
ijjijijij vzxU εωβα ++++=     (1) 

22
ijjijijij vwxU εδβα ++++=     (2) 

33
ijjijijij vqxU εθβα ++++=     (3) 

 

where U1
ij is the utility from alternative i chosen by individual j in experimental design 1. 

Since the utility difference between the two alternatives is not observed, U is defined as a 

binary variable (0,1). xij are the two attributes that are common across the three 

experimental designs, zij, wij and qij are the attributes that are specific to designs 1, 2 and 

3 respectively.  α, β, δ, ω and θ are coefficients to be estimated.  vj are random effects and 
t
ijε  (t = 1, 2, 3, for each design) are the independent and identically-distributed (i.i.d.) 

error terms.   

 

Alternatively, the data from each design can be pooled: 

 

   k
ij ij ij ij ij j ijU x z w qα β ω δ θ ν ε= + + + + + +    (4) 
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where z, w and q will be zero (i.e. a zero attribute difference) in the designs in which they 

are omitted, in line with our assumption that all other attributes are the same across the 

two alternatives.  αk are now design-specific constants for each of the k=3 designs, and 

can be represented by dummy variables for each design.  This controls for unobserved 

differences in the average probability of choosing scenario A or scenario B in each 

design.  This includes any ‘left-right’ bias where respondents may be more or less 

inclined to choose the constant comparator (Scenario A). It also controls for any 

differences in respondents’ characteristics between designs that were not accounted for in 

the random allocation of designs across respondents.  The pooled model has random 

effects, vj, and the error term εij  

   ( )321
ijijijij εεεε =  

where 

   stE s
ij

t
ij ≠∀= ,0),( εε  

In other words, εij is joint normal distributed.   

The following probit model is estimated: 

   )()|1Pr( jijijijij
k vqwzxxy +++++Φ== θδωβα   

   )(1)|0Pr( jijijijij
k vqwzxxy +++++Φ−== θδωβα  

where )|1Pr( xy = is the probability that the respondent chose scenario A.   

 

When combining different datasets, the discrete choice literature focuses on the 

combination of revealed and stated preference data.  These datasets are likely to vary in 

many ways, including the independent variables used and the context of the study (see, 

for example, Brownstone et al., 2000; Bhat and Castelar, 2003; and Louviere et al., 

1999).  It is therefore important to control for heterogeneity that may influence the 

responses in each dataset.  It is also important for the marginal utility of any common 

attributes to be equal, though there are two reasons why the coefficients on attributes 

common to each dataset may not be equal.  
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The first is that the β may vary because of different scale parameters (i.e. different means 

and variances of the unobserved factors) in each dataset.  The scale parameter cannot be 

estimated directly, but Swait and Louviere suggest a simple likelihood ratio test to test for 

the equality of β whilst accounting for differences in the value of the scale parameter for 

each model (Swait and Louviere, 1993).   If the data fails this test, it is argued that the RP 

and SP datasets cannot be combined since β varies across the data sources (Louviere et 

al., 2000; Train, 2002). 

 

The second reason why β may vary is unobserved heterogeneity, of which there may be 

several sources.  Omitted variables bias may be a problem as each data set might have a 

different and incomplete set of attributes and so if the omitted attributes are correlated 

with the included variables, then the coefficients will be biased, with the bias different in 

each dataset depending on which attributes have been omitted.  A particular problem with 

revealed preference data is the endogeneity of attributes which is notoriously difficult to 

account for in econometric models without additional information. A further source of 

unobserved heterogeneity between revealed and stated preference datasets is differences 

between the characteristics and preferences of the samples.  This is related to selection 

bias which may lead to different estimated marginal utilities from each dataset. 

 

Models (1) to (4) were estimated using a random effects probit model.  The random 

effects were used to account for correlations across observations caused by each 

respondent filling out at least 15 choices. This captures unobserved factors specific to 

each respondent. The dependent variable was either 0 or 1, depending on which scenario 

the respondent chose.  The independent variables were the differences between the levels 

of Scenario A and Scenario B.  

 

4. Prediction of utility scores 

All types of discrete choice model are grounded in random utility theory, which is a 

discrete choice approach to consumer theory.  If an individual chooses scenario B over 

scenario A, it is assumed that the utility of B is greater than A, although the actual utility 

cannot be observed, only the ordinal ranking.  The coefficients from the probit model 
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were used to predict rankings of individual patients who vary in terms of attribute levels.  

In generating the predictions from the models, the values of Scenario A were set to equal 

the ‘best’ possible health state. Since scenario B will always be ‘worse’ than A, this 

anchors the predicted probabilities to the ‘best’ health state.  The predicted probabilities 

can therefore be interpreted as the utility scores, bounded between zero and one, from a 

comparison of the patient’s actual health state to the best possible health state.  Any 

combination of the attributes of the questionnaire can be used to evaluate the model at 

specific points, allowing prioritization of a wide spectrum of patients. A higher utility 

score (predicted probability) means that patients are in a worse health state.  In terms of 

setting priorities for waiting lists, a higher score therefore means that the individual is 

given a higher priority on the list. The predicted probabilities are obtained from the linear 

prediction of the probit model evaluated using a standard normal distribution.  The 

predictions therefore depend on the distribution (mean and variance) of the linear 

prediction from the probit model.1  

 

5. Results of the application to orthopaedic waiting lists 

A high participation rate by Victorian surgeons was achieved (approximately 64%). 

While no information was available on the non-respondents, 100% of the surgeons at the 

scientific meeting completed the questionnaire suggesting the sample contained the 

majority of surgeons actively engaged in clinical practice. Table 1 shows the results from 

regression models (1) to (4).   

 

The common parameters β in the three models (look after others and enjoyment of life) 

are not equal across the models and this is confirmed by the Swait-Louviere test that 

rejects the null hypothesis of parameter heterogeneity.  This test accounts for differences 

in scale across the models, although this is unlikely to be a major problem since the 

models we estimate are very similar in terms of the choice task and types of variables 

included.  

 

                                                 
1 The same method was repeated for a logit model to ensure that the probit and logit would give the same 
rankings.  Since there were no outliers in the data that might affect the results, this turned out to be true and 
so the probit model was chosen. 
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Table 1.  Random effects probit regression results. 

 Design 1 Design 2 Design 3 Pooled 
 Β  (s.e) β  (s.e) β  (s.e) β  (s.e) 
Look after others 0.133** 0.061 0.242** 0.050 0.349** 0.059 0.225** 0.031 
Pain stops sleeping 0.699** 0.069 -  -  0.640** 0.064 
Enjoyment of life 0.336** 0.068 0.251** 0.049 0.555** 0.059 0.353** 0.032 
Enough help 0.116* 0.073 -  -  0.107* 0.063 
Difficulties financially 0.387** 0.059 -  -  0.366** 0.056 
Pain while resting -  0.651** 0.052 -  0.649** 0.050 
Been in paid work -  0.135** 0.051 -  0.139* 0.051 
Looking after self -  0.216** 0.055 -  0.236** 0.055 
Pain limits walking -  -  0.753** 0.058 0.691** 0.052 
Relationships -  -  0.021 0.073 0.079 0.068 
Change in joint problem -  -  0.491** 0.055 0.437** 0.049 
Dummy for design 2 -  -  -  -0.913** 0.212 
Dummy for design 3 -  -  -  -0.357 0.223 
Rho 0.266** 0.069 0.203** 0.054 0.195** 0.060 0.160** 0.037 
Constant 0.853** 0.236 -0.188 0.162 0.567** 0.174 0.580** 0.166 
         
-2LogL -272 -389 -310 -1001 
Pseudo R2 0.34 0.25 0.40 0.36 
Model χ2 (df) 182(5)** 177(5)** 238(5)** 668 (13)** 
Number of observations 797 760 754 2311 
Number of doctors 54 51 51 96 
Swait-Louviere test of parameter homogeneity (χ2, df):     58.4(1)**           

 

Notes: ** p ≤ 0.05; * 0.05 < p ≤ 0.10 

 

A reason why the coefficients are different might then be the existence of unobserved 

heterogeneity.  However, some sources of bias can be ruled out.  First, there will be little 

difference between the samples as each experiment was randomly allocated to 

respondents, so selection bias is unlikely to explain the differences in coefficients.  

Second, there was little difference in the context in which the data were collected.  Third, 

thirty respondents completed all three experimental designs which further provided 

confidence in the homogeneity of the samples.  The inclusion of design-specific constants 

(dummy variables) in the pooled model will account for unobserved differences between 

the samples and between the designs.  The dummy variable for design 2 was statistically 
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significant, suggesting that respondents in design 2 were more likely to choose scenario 

A.  This is likely to be due either to unobserved differences in respondents or due to 

differences in the average utility of scenario A over scenario B. 

 

Omitted variables are likely to be the source of the differences in coefficients. A key 

aspect of the blocked design was the deliberate omission of variables and our request to 

respondents to assume that all omitted attributes were the same for each choice. 

However, respondents (surgeons) are familiar with the process of choosing whether or 

not to admit patients and so will be familiar with all 11 attributes influencing this 

decision.  This is certainly the case for the thirty respondents who filled out all three 

designs.  For example, they may associate a high level of pain (an included attribute) with 

‘difficulties in looking after yourself’ (an omitted attribute) and therefore are more likely 

to choose the scenario with a high level of pain.  The coefficient on pain will therefore be 

biased upwards.   

 

Omitted variable bias is a more serious problem in probit and logit models than in linear 

models because even if the bias is independent of the x’s, the probit coefficients are 

inconsistent.  However, Woolridge (2002) has shown that the probit of y on x consistently 

estimates β/σ rather than β (given normality conditions and the correct probit structural 

equation), and that for the purpose of obtaining relative effects, this is as good as 

estimating β, if the magnitudes of the β do not have to be meaningful.  Since we estimate 

marginal effects (on the standard normal distribution) to “rank” the attributes, partial 

effects are sufficient.  Furthermore, while the relative ranking of the two common 

attributes in relation to the other included attributes changes across our three designs and 

the pooled model, the relative ranking of only the two common attributes does not.  In 

other words, ‘looking after others’ always has a smaller coefficient than ‘enjoyment of 

life’, and therefore ‘enjoyment of life’ is always more influential in prioritizing the 

patient on the waiting list than ‘looking after others’.  The fact that ‘looking after others’ 

is relatively less important in design 2 than in design 1, for example, only shows that in 

design 1 one of the included attributes (namely ‘enough help’) is relatively more 

important than ‘looking after others’.  This is confirmed in the pooled model.  Therefore, 
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omitted variable bias does not pose a problem in our pooled model and a random effects 

approach will capture all individual-specific heterogeneity.   

 

The issue with omitted variables bias is then whether we can pool the data given the 

specific context of our analysis.  A key issue is that, assuming the 11 attribute utility 

function is the complete utility function, the pooled model includes all of the omitted 

variables in the estimation.  This is quite different to combining stated and revealed 

preference data when the researcher does not know what the omitted variables are.  

Furthermore, since each respondent filled out at least 15 choices, the omitted variables 

are the same for all 15 choices and so any bias will be constant across respondents and 

will therefore be captured in the random effect rather than the idiosyncratic error.   

 

A potential problem with the random effects model is that it assumes the random effects 

are uncorrelated with the included attributes.  It therefore assumes that the omitted 

variables within the random effect are not correlated with the included attributes. To test 

this assumption, we estimated all four models with random and fixed effects logit, and 

found that the coefficients were similar when a fixed effects model was used.  This was 

confirmed by Hausman tests.  This suggests that any omitted variables in the random 

effect were not correlated with the included attributes, and is therefore not an explanation 

for the difference in coefficients across the models. 

 

If we can rule out the main sources of unobserved heterogeneity as causes for the 

difference in coefficients between the models, the only other reason why the coefficients 

are different is that the marginal utility and marginal rate of substitution between the 

common attributes is sensitive to which other attributes are included.  Respondents are 

making trade-offs with a different set of attributes in each design, and so the coefficients 

and the trade-off between the two common attribute coefficients, β1/β2, may be sensitive 

to which attributes are included.  However, even if this is the case, the data can still be 

pooled because this is a result of the fact that the relative ranking of the two common 

attributes is relative to all other attributes, as captured by the pooled model.  The ordering 

of the coefficients on the common attributes is not affected by what other attributes are 
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included in each design, as already mentioned.  Specifically, ‘enjoyment of life’ is always 

more important than ‘looking after others’, regardless of where these rank relative to the 

other attributes that are included in the design.  The pooled model uses the relative 

rankings of all attributes in relation to each other to provide an overall ranking.  That the 

coefficients of the two common attributes change is a reflection of the effect that the 

inclusion of all attributes has on the relative ranking.  This is not an indication that 

individual tastes are non-transitive or not well formed: if individual tastes were non-

transitive, this would be a problem even if the data were not pooled.   

 

Finally, we know that the unobserved factors are different in each design and, assuming 

our 11 attribute model represents the complete utility function, we know what the 

unobserved variables are. Whether the value of β varies across these models or not, the 

pooled model (4) will estimate the average value of β across all three experimental 

designs. Because we know what the unobserved factors are in models (1) to (3) and that 

they are included in the pooled model, the average value of β in the pooled model should 

be unbiased as it is estimated in the presence of the ‘unobserved’ factors which are now 

included in the pooled model.  The ‘unobserved’ factors causing the omitted variable bias 

become ‘observed’. Any remaining source of bias will result from our 11 attributes not 

representing the full utility function.  But this is the situation faced if we had included all 

11 attributes in one design.   

 

Pooling the data in this way compromises the design property of minimum overlap, 

which essentially means we have less information on which to base the estimation of the 

parameters since one third of the values of each of these variables will be zero.  This will 

influence the efficiency with which the parameters are estimated rather than cause bias.  

 

In the pooled model, the largest coefficients are those for the three pain attributes, 

followed by the change in hip or knee problem, difficulties financially, enjoyment of life, 

looking after self, looking after others, and being in paid work.  ‘Difficulties with 

relationships’ is not statistically significant and ‘enough help looking after self’ is only 

significant at the 10% level.  All coefficients are positive, suggesting that more severe 
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levels of each attribute lead to a higher probability of being prioritised. Rho is a test of 

the significance of the random effects, and assesses whether there is a correlation 

between the multiple answers of each respondent.  It shows that such a correlation did 

exist.   

 

These coefficients and the constant were used to evaluate the model at different attribute 

levels.  For each attribute, the attribute differences range from -3 to +3, so some of the 

evaluations will be out-of-sample predictions.  We provide an example for 10 individuals 

who completed the MAPT instrument.  The levels of each attribute were compared to the 

combination of attributes representing the best possible health state (i.e. attribute values 

are all equal to 1).  The differences in levels between the actual and best health state were 

used to calculate predicted probabilities using the marginal utilities from the pooled 

regression model. So for each individual, the linear prediction ŷ  is: 

    ˆ j j my dα β= +  

Where dj is the attribute difference for individual j and βm is the regression coefficient for 

the m attributes. For the 10 hypothetical individuals this results in the linear predictions 

utility scores and ranking shown in Table 2.  This shows the predicted probability that 

patient B will be prioritised over patient A (who is in the best health state).  These 

predicted probabilities are bounded between zero and one and can be interpreted as utility 

scores given the theoretical basis of the choice experiment.  These scores are ranked in 

descending order to establish who has priority among these ten individuals who are 

waiting for hip/knee surgery. 

 

Table 2.  Utility scores and priority ranking for 10 hypothetical individuals. 

 Ind.1 Ind.2 Ind.3 Ind.4 Ind.5 Ind.6 Ind.7 Ind.8 Ind.9 Ind.10

ŷ  12.35 7.93 6.82 10.64 4.96 4.50 8.42 2.65 8.84 7.64 

Predicted probability 
(utility score) 0.95 0.56 0.41 0.86 0.19 0.15 0.63 0.05 0.68 0.52 

Ranking 1 5 7 2 8 9 4 10 3 6 
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In the regression model, it was assumed that the attribute differences were linear as they 

were treated as continuous variables. To test this assumption, the probit model was re-

estimated using dummy variables replacing the continuous variables one at a time.  If the 

coefficients on the dummy variables increase by approximately equal intervals, and the 

confidence intervals from one dummy variable to the next overlap, the explanatory 

variables are monotonically increasing, and it can be concluded that they are 

approximately linear.  This turned out to be the case and so using assuming linearity and 

using continuous variables were appropriate.  Likelihood ratio tests comparing models 

with dummies to models with continuous variables favoured the models with continuous 

variables. Furthermore, re-coding the variables into dummies did not influence the 

rankings of individuals.  

 

6. Discussion 

We used a discrete choice experiment to weight a quality of life tool to allocate queue 

position of patients waiting for hip and knee joint replacement surgery.  To avoid 

respondents having to trade off 11 attributes, we used a ‘blocked attribute’ design where 

the 11 attributes were allocated to three separate experimental designs.  Two questions 

were repeated across the questionnaires, the rest differed between them.  It was not 

possible to reduce the number of attributes because these came from an existing 

questionnaire and each attribute was regarded as clinically essential for prioritizing 

patients.  In fact, because designs may get created from the literature, focus groups or 

interviews where important attributes are defined, designers may not always have the 

flexibility to reduce the number of attributes.  Our methodology does not require reducing 

the number of attributes and therefore avoids biases that are likely to exist in other 

studies.  Regression results were used to calculate predicted utility scores, bounded 

between zero and one, that can be used to rank patients on orthopaedic waiting lists.   

 

Since the MAPT is a disease specific quality of life instrument, there are also clear 

applications of this methodology to generating single index scores for quality of life 

instruments with many dimensions, without having to artificially reduce the number of 

quality of life dimensions. 
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With respect to the choice experiment, there was no opportunity to compare an 11 

attribute design with our ‘blocked attribute’ design and this is a topic for further research. 

However, even then it would be difficult to distinguish between non-compensatory 

decision making and making inherently different trade-offs.   We have argued that the 

failure of the Swait and Louviere test for parameter homogeneity is not an issue in this 

context, since the unobserved factors are captured in the individual-specific random 

effects and the pooled model includes the known omitted variables causing the bias and 

therefore estimates an unbiased parameter.  This, however, assumes that the 11 attributes 

represent the complete utility function and this may not be the case.  Nevertheless, this 

would also be the case if we had conducted the experiment with an 11 attribute design. 

 

Orthogonal designs have some limitations because they only ensure independence of the 

effects of different attributes, and not necessarily that all relevant trade-offs (within each 

of our three designs) are presented to the respondents.  Another approach would be to 

generate an efficient design rather than an orthogonal design.  An efficient design would 

be generated by assuming prior values for the β‘s, using these to estimate the covariance 

matrix, and then minimising the errors to make the β’s as close to their true values as 

possible when generating the design.  Our orthogonal design does not guarantee the 

lowest possible errors, and so more accurate coefficients could be obtained if an efficient 

design had been used.  It is difficult to estimate these prior values of β unless a similar 

study has been conducted before. However, we were able to check, after our DCE was 

completed, whether we had low or high D-errors, the measure commonly used to 

minimise errors in efficient designs.  Instead of using prior values for the β’s, these 

calculations use the actual values that were calculated once the experiment was complete.  

The D-error is based on the following: 

 

   KXerrorD /1* )|ˆ(det( βΩ=−  

 

where *Ω is the covariance matrix of the β’s, excluding constants, and K is the number of 

parameters to estimate.  For design 1, the D-error is 0.2834; for design 2, the D-error is 
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0..2871; and for design 3, the D-error is 0.2798.  These are all fairly reasonable, so our 

orthogonal design seems to be relatively efficient as well.   

 

There are a number of issues to be resolved to apply this to actual waiting lists.  Since the 

utility score and ranking is based on the mean and standard deviation of the linear 

prediction, any new additions and patients leaving the list require the whole ranking to be 

re-calculated.  This may mean that some patients never reach the top of the list since their 

‘place’ will change, and so raises issues about how the ranking will be used in practice. It 

is likely that the scores would need to be weighted by the length of time spent on the list.  

It may also be necessary to repeat the exercise at regular intervals, as rankings will 

change as quality of life changes over time.  These issues depend of course on how 

waiting lists are managed now, of which there is very little information. 

 

There are also issues about doctor’s thresholds to place people on the list.  One can 

imagine that the decision is taken in two parts, whether to place a person on the list, and 

then what priority to give them.  A choice experiment could be designed along these lines 

by including a ‘do not place on the list’ option.  Then it would be possible to model 

doctors’ admission thresholds.  These thresholds are likely to be influenced by a number 

of factors, including the doctor’s private practice.   

 

A further issue is that although the MAPT levels will be generated by patients, the utility 

weights were generated by a group of surgeons.  Strong arguments in favour of patients 

determining both the MAPT levels and the weights can be made, given the important role 

that community preferences should play.  However, this was not possible in this study 

because in order to use the MAPT at all, surgeons insisted they should be involved in the 

process of setting priorities on the waiting list and in judging the clinical need of patients 

for treatment.  Debates about whose preferences should be included in any type of quality 

of life measure are abundant, and in this setting, patients’ values might be more 

appropriate given that they are the ones experiencing the symptoms, not the surgeons.  

On the other hand, surgeons would be thoroughly familiar with all the attributes, while 

some patients may not have experienced all the symptoms, and so may not be a good 
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judge of them.  Further research should compare the preferences of surgeons with those 

of patients.   

 

Another issue is that patients have an incentive to overstate the seriousness of their 

condition on the MAPT, rendering them a higher place on the waiting list.  The only 

control for this is that the doctors, who know the seriousness of their patients’ condition, 

check that their patients did not overstate their condition.  But then there might be an 

incentive for the doctors to see that their own patients get higher on the waiting list as 

well, exacerbating the problem rather than alleviating it.   

 

There is a more fundamental issue in that the priorities are determined solely on current 

quality of life, and not on the expected cost per QALY or expected capacity to benefit 

from treatment for an individual patient.  One could argue that it is the expected gains in 

quality and length of life per additional dollar spent that should determine priorities and 

then ensure that health status is maximised from the available resources.  Although the 

ranking generated here may improve on the current situation of waiting list management, 

it does not necessarily lead to an efficient allocation of scarce resources.  Perhaps the 

routine administration of the MAPT a few months after surgery would enable us to 

predict changes in utility for patients, so the benefits of treatment could be estimated and 

used to prioritise patients coming onto the list with similar characteristics in combination 

with data on treatment costs.  This, however, may greatly increase the complexity of 

placing patients on the waiting list, not least because capacity to benefit from treatment 

would depend on a number of other factors, such as age and general health, which are 

largely patient-specific and multi-dimensional.   

 

7. Conclusion 

A discrete choice experiment was used to rank 11 attributes of an existing questionnaire, 

using a new methodology whereby the attributes were split across three separate designs, 

and the data pooled to obtain the final ranking.  Two potentially serious issues, namely 

different scale parameters and unobserved heterogeneity, were addressed and found not 

to be of significance in this particular setting.  Thus, it seems possible that attributes can 
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be allocated across separate designs, which has the beneficial effect of reducing the 

complexity of experiments without compromising the content of the study by reducing 

the number of attributes.   
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Appendix: The 11 dimensions of the Multi-attribute Arthritis Priority Tool (MAPT)* 

 

1. Do you have hip or knee pain that does not get better even when you rest (for 
example, while sitting)? 
4 levels  

 
2. Do you have hip or knee pain when you first go to bed at night that stops you 

going to sleep? 
4 levels  

 
3. Do you have hip or knee pain that limits your walking? 

4 levels  
 
4. Does your hip or knee make it difficult for you to look after yourself (such as 

washing yourself, getting dressed, going to the toilet)? 
4 levels  

 
5. Do you get enough help with looking after yourself (such as washing yourself, 

getting dressed, going to the toilet)? 
4 levels  

 
6. Does your hip or knee affect your enjoyment of life? 

4 levels  
 
7. Does your hip or knee cause difficulties with your relationships with people close 

to you (such as wife, husband, children and close friends)? 
3 levels  

 
8. Does your hip or knee make it difficult for your household (yourself, family and 

others) to manage financially? 
4 levels  

 
9. Have you been in paid work in the last 6 months? 

4 levels  
 

10. Do you need to look after people who require your care (such as a sick or disabled 
partner or family member)? 
4 levels  
 

11. Overall, is your hip or knee problem different now compared with how 
it was 6 months ago? 
4 levels  

 

* Full version of questionnaire is available from the author.  
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