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Abstract 

Theoretical models have long shown that knowledge spillovers are of great economic 

importance to sustained economic growth and innovation and that these spillovers may be 

facilitated by physical and technological proximity.  However, local knowledge spillovers 

have not been identified using data from developing countries. In this paper, we examine the 

relationship between knowledge spillovers and both technological and geographical 

proximities using micro panel data of Indonesian manufacturing plants between 1990 and 

1995. We find both physical and technological proximity are significant. Knowledge 

spillovers are stronger among plants in the same industrial sector and their magnitude 

decreases monotonically with geographical distance. 
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1. Introduction 

As countries open their borders to foreign goods and services, information spillovers have 

been increasingly recognized as an important source of innovation and economic growth in 

developing countries.  A number of theoretical arguments and some empirical findings 

indicate that such knowledge are concentrated in spatial proximity from their respective 

source, an idea that goes back to Marshall's (1920) hypothesis that geographical proximity 

increases the probability of knowledge spillovers.    

The existence of spatial externalities embodied in Marshall's hypothesis relies on the 

assumption of human interaction as an important vehicle for knowledge transfers.  In 

particular, geographical proximity is an important determinant of the diffusion of tacit 

knowledge (Audretsch and Feldman, 1996b).  Similarly, Mills (1992) refers to this type of 

knowledge as ambiguous information that “requires an interactive and convergent set of 

exchanges before the final exchange can be consummated.”  In Mill’s view, ambiguous 

information is information that requires negotiation to establish meaning.  This includes 

informal exchanges that may have to occur among producers, managerial staff, local 

suppliers, marketing and legal experts and other groups (Beugelsdijk and Cornet, 2001).  

Since tacit or ambiguous knowledge is rarely published, and therefore cannot be accessed by 

studying books or other published materials, its diffusion requires face-to-face access and 

hence, human interaction.  Human interactions, in turn, are facilitated by geographical 

concentration or clustering.  

While there is some empirical evidence to support Marshall’s hypothesis in developed 

countries such as the U.S., the same is not true for research on this issue in developing 

countries.  The lack of any evidence of local knowledge spillovers in developing countries 

may be related to the fact that existing studies have concentrated on specific sources of 

knowledge spillovers such as research and development (R&D) expenditures, foreign direct 

investments or more recently, export experience.  For instance, studies which focus on 

knowledge spillovers coming from say, foreign producers might miss the possibility of other 

domestic producers as the source of the spillovers.  Finally, data-related problems including 

the paucity of firms formally involved in R&D or foreign direct investments, missing data, 

measurement error or the unreliability of the data are very likely contributors to this lack of 

spillover evidence in developing countries.  
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This paper follows Winston (2001) in taking a broad view of the sources of spillovers by 

characterizing a firm’s knowledge as anything that increases its total factor productivity 

(TFP).  Differences in TFP among firms are assumed to reflect differences in product design, 

processing technologies, organizational technologies and/or managerial skills.  If each of 

these differences can be interpreted as a part of a firm's collective knowledge, then it is also a 

potential source of knowledge spillovers enabling each firm in the vicinity to benefit from the 

spillovers of specialized knowledge and to have lower costs than if it operated in isolation.  In 

this way, knowledge spillovers this period translate into lower TFP in the next period. 

While the TFP measure does not allow us to identify the source of the knowledge spillover, it 

is able to capture the extent of knowledge accumulated and potentially available for other 

firms to learn from or imitate, whether or not it is in the interest of the agent with the 

knowledge to leak information about the new product or technology involved.   

The empirical work in this paper is based on micro panel data from the Indonesian Census of 

Manufactures from 1990 to1995.  We extend Winston’s paper in two important aspects.  

First, we include a physical distance measure between plants.  Specifically, we follow 

Beugelsdijk and Cornet's (2001) "shell-model" idea in constructing our measure of external 

knowledge which varies by distance.  Second, we analyze how the extent of knowledge 

spillover varies across different industries.  Firms' ability to benefit from  external knowledge 

depends on their absorptive capacity.  This absorptive capacity is likely to be greater for firms 

within the same industrial sector than across different sectors.  In addition, the industrial life 

cycle hypothesis asserts that tacit knowledge is more important in the early stage of the 

industry life cycle (Audretsch and Feldman, 1996b).  Therefore, we expect spillover effects to 

be stronger in industries with relatively young firms. 

The remainder of the paper is divided into five sections.  In the next section, we summarize 

the theoretical and empirical frameworks.  This is followed by a discussion on the 

measurements of geographical distance and firm internal and external knowledge in section 

three.  The fourth section details the empirical model specifications. In section five we 

discuss and interpret the estimation results.  In the final section we summarize the major 

findings and conclusions. 

2. Theoretical and Empirical Framework 

Our empirical framework is based on Hopenhayn's (1992) model of firm dynamics and 

Winston's (2001) extension to include knowledge spillovers from physical proximity. The 
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model contains three basic elements.  First, it specifies the knowledge creation process as one 

that generates internal and external knowledge.  Second, it includes a measure of 

geographical proximity to capture how knowledge spills over.  Third, since endogenous 

turnover determines which firms are observed in the data, the model incorporates an 

explanation for firm exit. 

Given that the knowledge accumulation process and the spillovers associated with it is 

subject to uncertainty, new ideas are modeled as a random draw.  In every period t , a 

representative plant i  utilizes its current period stocks of internal ( itθ ) and external 

knowledge in physical location L ( L
itΘ ) to produce new ideas, itκ .1, 2  The quantity or quality 

of the new ideas and exogenous plant characteristics ( itx ) , such as plant age and size, 

determine the family of knowledge distributions, ( )it
L
itit xK ,,Θθ  from which plant i  can 

randomly draw its new knowledge.  However, since the transformation of new ideas into new 

knowledge takes time, itκ  can only be incorporated into the next period stock of knowledge. 

“Old” knowledge may be rendered obsolete and replaced with new knowledge.  Thus, the 

evolution of knowledge stock over time is specified as: 

( ) ititit κθδθ +−=+ 11                      (1) 

whereδ denotes the proportion of the internal stock of knowledge destroyed in each period. 

In every period t , given its own stock of production knowledge ( itθ ), plant i  produces total 

output ( ity ) from labor input ( itw ), capital input ( itk ), and inputs of raw materials, fuel and 

electricity ( itm ) according to a production technology represented by ( )ititititit mkwY ,,,θ .  In 

addition, the plant forms a rational expectation of its future knowledge and, thus its future 

output, in order to decide whether or not to stay in the market.  The exit-entry decision is 

based on an inter-temporal optimization of profits.  In particular, in every period, plant i  

                                                 

1 Henceforth, we will use ‘plant’ instead of ‘firm’ in order to be consistent with the level at which the data is 

collected in the Indonesian Census of Manufactures. 

2 The ‘new-ness’ of knowledge is with respect to plant i only.  In other words, plant i ’s new knowledge may be 

another plant’s old knowledge. Thus, there is no distinction between imitation or innovation in this 

framework.  
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compares the sum of all present discounted value future profits relative to its current scrap 

value.  If the current scrap value exceeds the present discounted value of all future profits, 

then the firm will choose to exit.  This implies a productivity threshold the plant uses to make 

exit decisions.  This threshold level varies across plants and depends on plant’s individual 

characteristics and its knowledge evolution process.  The plant's decision rule is then 

specified as: 

( )
⎩
⎨
⎧ Θ≥

=
otherwise 0

,  if 1 L
itititit

it
z

F
θθ

                      (2) 

where the plant’s productivity threshold, itθ , is a latent variable which depends on itz , a 

vector of exogenous characteristics which affect the exit decision, such as age and the value 

of physical assets as well as its external knowledge stock.3  The observed binary choice 

variable, itF , takes on the value of 1 if the plant chooses to continue production and 0 

otherwise.  

The empirical model is specified as the reduced form of equations (1) and (2) such that 
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where LS
it

,Θ  is a vector of measures of external knowledge available for plant i  in    period t , 

itx  and itz  are vectors of plant characteristics. Furthermore, the set 

{ }σρψϕλλγβαα ,,,,,,,,, 110  contains the parameters to be estimated using Heckman's 

sample selection maximum likelihood estimation method.  

An important observation from the derivation of equations (1) and (2) is that in every period 

t , the turnover of plants determines the stock of external knowledge available to plant i .  As 

a result, it is possible for the unobservable terms, 1+itε  and itµ , in equation (3) to be 

                                                 

3 See Table 4 for the components of itz . 
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correlated with each other.  In the empirical estimation, we assume ( 1+itε , itµ ) ~ bivariate 

normal [ ]ρσ ,,1 ,0 ,0 . 

To estimate the system of equations in (3), we need to construct the measures of external 

knowledge ( L
itΘ ) bearing three properties.  First, for any plant i , L

itΘ  must reflect the 

distribution of internal knowledge of all other plants located in each region.  Second, the 

measures must capture within-sector spillover.  Finally, the measures must reflect the level of 

possible human interactions between plant i and its neighbors in each location.   

To fulfill the first property, we construct L
itΘ  for plant i as the median of the internal 

knowledge ( jtθ ) of all j  plants, ij ≠ , producing in each location 3,2,1=L  with the closest 

ring represented by 1=L  and so on.  L
itΘ   is constructed across all industrial sectors.  In line 

with the second property, we construct LS
it

,Θ  for each plant i as the median TFP of all j  

plants, ij ≠ , in sector S and location L.   Consistent with the final property, we construct 
LS

itF , and LS
itW , which represent the total number of plants and number of paid-workers, 

respectively, in each location L and sector S, excluding plant i from each measurement.  

In the measures described above, the superscripts attached to the spillover measures, S and L, 

capture the degree of technological and geographical proximity, respectively.  In addition to 

the number of neighboring plants ( L
itF and LS

itF , ) we also consider the total number of 

workers ( L
itW  and LS

itW , ) in the neighboring plants as an alternative proxy for the level human 

interaction.  We argue that having two neighboring plants with a combined total of 500 

employees might provide greater opportunities for interaction than having five neighboring 

plants with a combined total of 100 employees.  

We estimate four basic model specifications.  Each specification uses different variations of 

the measure of external knowledge.  The main parameters of interest are listed in Table 1.  

The + and the )(L↓  symbols in the table represent the expectation, based on the theoretical 

model, about the coefficients in the equation for knowledge-evolution.  In particular, the + 

signs indicate positive spillover effects and the )(L↓ signs indicate that the strength of the 

spillover effects decreases as distance increases. 

Knowledge spillovers exist in the model if L
itΘ , LS

it
,Θ , L

itF , LS
itF , , L

itW and LS
itW ,  have positive 

effects on firm i 's future knowledge stock, 1+itθ .  Other things equal, a higher LS
it

,Θ  implies a 
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higher quantity or better quality of external knowledge from which new ideas can be drawn 

and converted into new knowledge, which translates into improved future internal knowledge 

and productivity.  Similarly, a higher LS
itF , or LS

itW ,  implies greater opportunities of 

interacting with and learning from neighboring firms and, therefore, impacting on the quality 

of the firm’s future stock of new ideas and thus, productivity. 

  

Table 1:  Parameters for the Knowledge-Evolution Equation 

Measures of  
External Knowledge Model 1A Model 1B Model 2A Model 2B 

L
itΘ  +, )(L↓  +, )(L↓    

LS
it

,Θ    +, )(L↓  +, )(L↓  
L

itF  +, )(L↓     
LS

itF ,    +, )(L↓   
L

itW   +, )(L↓    
LS

itW ,     +, )(L↓  
 

If both technological and geographical proximities matter, then we expect the positive 

spillover effects of external knowledge to vary across sectors, S and locations, L in a 

systematic way.  In particular, Marshall's hypothesis can be translated in terms of the 

following inequality: 321
ititit Θ>Θ>Θ .  Furthermore, if technological proximity matters then 

we expect 0, >Θ LS
it  to hold.  Table 2 lists the exogenous variables included in the vectors of 

firm characteristics itx  and itz .  The + and - are the expected signs for the respective 

coefficients.  For example, if there is any vintage capital effect, then, ceteris paribus, we 

expect the coefficient on the age variable to be negative, implying that compared to younger 

plants, older plants have lower future productivity.  Furthermore, if larger plants are more 

willing to accept losses in any economic downturn, then the coefficients of itc  (log value of 

total assets) will be positive.  The set of vectors of dummy variables itYr , itR , and itSd  are 

included to capture other factors that may be important to account for in examining the 

correlation between a plant's future TFP and its current external knowledge.  More 

specifically, itYr  represent four year dummies which capture any contemporaneous shocks 

that affect all plants.  itR  consists of four dummy variables based on the five major islands in 
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Indonesia and captures any common effects due to unobserved regional characteristics.  

Finally, itSd  consists of eight dummy variables based on the 2-digit ISIC classification and 

captures specific shocks to common plants in each sector. 

 

Table 2: Exogenous Variables 

Exogenous variables itx  
(knowledge equation)

itz  
(exit equation) 

ita (log of age in production) - 
(vintage capital) 

+ 
(experience) 

itN  (1 if a new entrant) - 
(inexperience) 

- 
(inexperience) 

itc  (log of the value of capital)  + 
(size effects) 

2
itc  (the square of itc )  + 

(size effects) 

itYr  (year dummy variables) ? ? 

itR  (region dummy variables) ? ? 

itSd  (sector dummy variables) ? ? 
 

3. Measurement Methodology 

3.1. Ring-model of geographical proximity 

To test Marshall’s hypothesis, we need to construct a measure of external knowledge that 

varies with a measure of physical distance.  In this paper, we follow Beugelsdijk and Cornet 

(2001) by drawing consecutive rings around each plant i as shown in Figure 1.  We then 

construct separate measures of external knowledge for each of the regions defined by these 

rings.  As shown in Figure 1, the three rings define the three shell-locations ( 3 ,2 ,1=L ) used 

in our empirical estimation.  

The alternatives on how rings are defined depend on the available location data.  According 

to Beugelsdijk and Cornet, ideally the rings should be defined around plant i  on an equal cost 

of distance base.  This way, the regions are defined consistently in terms of how costly it is 

for plant i  to interact with its neighbors in each different region.  Alternatively, rings may be 

defined simply as circles with radius based on the actual physical distance from plant i .  For 
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Figure 1:  Rings around a representative firm i defining i 's neighbors located in three 
different locations with increasing distances from i 's location. 

 
 

 

 

example, 1=L  may be defined as the area within 0-10 miles from plant i 's location, and so 

on.  Thus, regions are defined consistently for every plant in a metric sense.  Beugelsdijk and 

Cornet, for lack of better data, used four-digit Dutch zip code to define the first ring ( 1=L ), 

the three-digit zip code to define the second ring ( 2=L ) and so on.  Unfortunately, the use 

of zip codes might result in inconsistencies in the way the locations are defined.  

Our empirical estimation is based on micro panel data from the Indonesian Census of 

Manufactures from 1990 to1995.  We define the rings to coincide with three levels of 

regional borders defined by the Indonesian government.  At the most aggregated level, the 

country is divided into several provinces.  Each province is divided into several kabupaten.4  

Each kabupaten is divided into several kecamatan.  For practical purposes we can think of 

kecamatan as representing counties and kabupaten as districts.  We then define 1=L  to be 

the kecamatan in which plant i  is located. Consequently, 2=L  is the region outside plant 

                                                 

4  The definition of a kabupaten is approximately equivalent to the combination of several neighboring counties 

in the U.S. 
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i 's kecamatan but still in the same kabupaten as plant i’s.  Finally, 3=L  is defined as the 

region outside plant i ’s kabupaten but still in the same province as plant i’s.5  

The use of administrative region as a measure of physical distance is not perfect in the sense 

that there may be inconsistency across plants.  However, it captures the effect of physical 

proximity in the sense that opportunities for interaction decrease or becomes more costly with 

each movement away from the inner shell.  Furthermore, this measure is probably superior to 

the use of zip codes in that different administrative region is likely to imply different 

administrative rules and regulations and therefore different costs of doing businesses.  Any 

information or knowledge that can be used to reduce certain costs can certainly be shared or 

spilled over to neighboring plants.  On the other hand, two different regions defined by two 

different zip codes are not necessarily located in different administrative areas. Therefore, the 

implied extent of the locality of knowledge spillovers, at least in the sense of sharing 

information that may reduce business administrative costs, is smaller. 

3.2. The measure of knowledge 

We assume that that a plant's knowledge can be represented by an index of TFP. Basically, 

this implies that any variation in plant performance as measured by its TFP is a reflection of 

the variation in the plant’s general knowledge: knowledge of production, business operation, 

marketing and/or management.  

The TFP index is used as a single measure of the plant i’s relative efficiency in a year, a 

proxy for itθ  , in the theoretical model.  A TFP index captures many factors that can lead to 

profit differences across plants, including differences in technology, age or quality of the 

capital stock, managerial ability, scale economies combined with differences in size, or 

differences in output quality.  Our interest is in the relationship between this broad-based 

performance measure and the extent of knowledge spillovers as well as the exit decision.  

As our index of TFP we adopt the multilateral index developed by Caves, Christensen and 

Diewert (1982), extended by Good, Nadiri, and Sickles (1997) and empirically used in Aw, 

Chung and Roberts (2000).  The multilateral index relies on a single reference point that is 

constructed as a hypothetical plant that has the arithmetic mean values of log output, log 

                                                 

5  In Sjoholm (1999), the smallest regions defined as ‘districts’ are actually the kabupaten. 
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input, and input cost shares over all plants in each year.  Each plant’s logarithmic output and 

input levels are measured relative to this reference point in each year and then the reference 

points are chain-linked over time.  

The total factor productivity index for plant i in year t is defined as:  

( ) ( )
( )( )

( )( )ffff
n

f

t

f
it

f
it

f
it

f
it

n

f

t

ttitit

XXaa

XXaa
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1

2
1

2

1
2
1

2
1
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−−
==

=

=
−
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−−+

−−+−=

∑∑

∑

∑

ττττ
τ

τ
τ

   (4) 

 where fX  and f
ita  denote plant i 's value and cost share of the specific factor input f . 

The first term in the first line of equation (4) measures plant i 's output (Yi) relative to a 

hypothetical plant output, constructed as the average (represented by the overbar) of total 

output over all plants.  The second term in the same line measures how much the output of 

the hypothetical plant has changed between period t -1 and period t.  Similarly, the second 

and third line measure plant i 's relative inputs, weighted by the appropriate cost or revenue 

shares, f
ita .   In short, for every plant i , equation (4) measures the plant's performance 

relative to the performance of a hypothetical plant in each period and over time.6 

4. Empirical Results 

Two sets of regressions are estimated to determine the importance of local knowledge 

spillovers using variations in the measures of external knowledge listed in Table 1.  The first 

set investigates the effects of geographical and technological proximity on the extent of 

knowledge spillovers. The second set examines sectoral variation of those effects. 

Table 3 reports the estimation results of the baseline model and two specifications that take 

geographical and technological spillovers into account.  All the regressions in the table are 

based on data pooled over all industrial sectors and years.  We do not report the results of the 

coefficients on the sector and year dummies. 

                                                 

6 Appendix 1 provides a more detailed description of the data set and the measurement of firm inputs and 

output. 
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Table 3: Estimates for the knowledge-evolution equation based on all sectors data 
 

Regressors Baseline Model 1A Model 1B Model 2A Model 2B

itN  -0.012**  
(0.006) 

-0.013**  
(0.006) 

-0.009 
 (0.006) 

-0.003 
(0.009) 

0.002 
(0.009) 

ita  -0.015*** 
(0.002) 

-0.013*** 
(0.002) 

-0.012*** 
(0.002) 

-0.010*** 
(0.003) 

-0.009*** 
(0.003) 

itθ  0.658***  
(0.004) 

0.653***  
(0.004) 

0.652*** 
(0.004) 

0.635***  
(0.006) 

0.636***  
(0.006) 

1
itΘ   0.079***  

(0.008) 
0.076*** 
(0.008) 

0.101***  
(0.015) 

0.100***  
(0.015) 

1,S
itΘ     0.021**  

(0.010) 
0.026***  
(0.010) 

2
itΘ   0.056***  

(0.013) 
0.040*** 
(0.012) 

-0.057**  
(0.021) 

-0.070*** 
(0.021) 

2,S
itΘ     0.054*** 

(0.010) 
0.064***  
(0.010) 

3
itΘ   -0.068**  

(0.027) 
-0.052** 
(0.025) 

-0.093** 
(0.038) 

-0.084**  
(0.034) 

3,S
itΘ     0.043*** 

(0.015) 
0.051***  
(0.015) 

1
itF or 1

itW   -0.002  
(0.002) 

0.003*** 
(0.001) 

0.016*** 
 (0.003) 

0.007***  
(0.002) 

1,S
itF or 1,S

itW     -0.021*** 
(0.003) 

-0.004**  
(0.002) 

2
itF or 2

itW   0.005***  
(0.002) 

0.008*** 
(0.0021 

-0.002 
 (0.004) 

0.012***  
(0.003) 

2,S
itF or 2,S

itW     -0.003 
(0.003) 

-0.004*  
(0.002) 

3
itF or 3

itW   -0.009*** 
(0.003) 

-0.007*** 
(0.002) 

-0.004  
(0.005) 

-0.004  
(0.015) 

3,S
itF or 3,S

itW     -0.006*  
(0.003) 

-0.001  
(0.002) 

Const  0.030*** 
 (0.014) 

0.073*** 
(0.026) 

0.005 
(0.034) 

0.024 
(0.044) 

-0.054  
(0.054) 

Observations 37158 34347 34347 18017 18017 
*, **, *** = significant at 10%, 5%, and 1% level. 
Figures in parenthesis are standard errors. 
All regressions include year-, region-, and sector-dummy variables 
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The estimated coefficients of the baseline model in column 2 indicate that current level of 

TFP is a strong and statistically significant determinant of future TFP.  The estimated 

coefficient of internal knowledge ( itθ
)

) implies that a 10% difference in the mean of current 

period TFP distribution is positively associated with 6.58 % difference in the mean of future 

TFP distribution from which the plant can draw for the next period. The negative sign of the 

estimated coefficient of age ( ita ) indicates a statistically significant effect similar to that 

predicted by the vintage capital argument.  However, the magnitude of the effect is small.  

Finally, we find evidence that newer plants are drawing from a TFP distribution with a mean 

less than those for the incumbent plants.  This is consistent with the fact that, in contrast to 

incumbent plants, recent entrants include many that are low productivity plants and likely to 

fail in the future.  

Table 4 reports the estimated parameters of the selection equation.  In addition to the 

parameters of the evolution equation, the selection equation includes the natural log of capital 

and its square.  The results are consistent with the predictions of the theoretical model 

regarding plants’ endogenous exit decisions in that older, larger and more productive plants 

are more likely to survive while recent entrants are more likely to exit.  These patterns are 

consistent with the predictions of Hopenhayn's theoretical model.  For example, his model 

predicts that new entrants are more likely to exit, especially when sunk costs are small.  In 

addition, it is also consistent with the empirical finding based on U.S. manufacturing firms 

(Bernard and Jensen, 2002).  However, given that the capital squared term is never 

statistically significant, there is no evidence that the plant size effect on survival is nonlinear. 

4.1. Physical Proximity matters 

Going back to Table 3, the third column of the table reports the coefficient estimates of the 

external knowledge variables in the knowledge-evolution equation: L
itΘ , LS

it
,Θ , L

itF , and LS
itF , .  

In particular, model 1 shows how much geographical proximity affects the extent knowledge 

spillovers and model 2, the effect of technological proximity.   

There is strong evidence of localized knowledge spillovers when we consider median TFP of 

the neighboring plants as a measure of external knowledge.  The coefficient estimates for 

median TFP of the immediate neighbors located in the first shell-location ( 1
itΘ

)
) are positive 

and statistically significant.  A 10% higher median TFP of the closest neighbors is associated 

with 0.8% higher future TFP.  The relatively small values of 1
itΘ

)
 compared to the coefficient  
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of the internal knowledge ( itθ
)

) indicate that the latter is a much more important factor in the 

process of knowledge-evolution.7    

Table 4:  Estimated coefficients for the exit-rule equation using all sectors data 

Regressors Baseline Model 1A Model 1B Model 2A Model 2B 

itN  -0.615*** (0.032) -0.626*** (0.034) -0.636*** (0.034) -0.617*** (0.052) -0.625*** (0.052) 

ita  0.142*** (0.011) 0.134*** (0.012) 0.133*** (0.012) 0.111*** (0.016) 0.108*** (0.016) 

itc  0.053 (0.040) 0.095** (0.043) 0.100** (0.043) 0.125* (0.068) 0.115* (0.069) 
2
itc  0.002 (0.002) 0.001 (0.002) 0.001 (0.002) 0.000 (0.003) 0.000 (0.003) 

itθ  0.270*** (0.025) 0.325*** (0.028) 0.324*** (0.028) 0.265*** (0.043) 0.251*** (0.043) 
1
itΘ   -0.072 (0.048) -0.098** (0.048) 0.039 (0.098) -0.017 (0.099) 

1,S
itΘ     0.032 (0.063) 0.015 (0.140) 
2
itΘ   -0.037 (0.072) 0.004 (0.073) 0.506*** (0.137) 0.557*** (0.140) 

2,S
itΘ     -0.004 (0.060) -0.030 (0.060) 
3
itΘ   -2.368*** (0.153) -2.244*** (0.143) -3.482*** (0.266) -2.916*** (0.221) 

3,S
itΘ     -0.058 (0.101) -0.013 (0.101) 
1

itF or 1
itW   0.075*** (0.009) 0.038*** (0.007) 0.044** (0.020) 0.033** (0.014) 

1,S
itF or 1,S

itW     0.076*** (0.020) 0.032** (0.020) 
2

itF or 2
itW   -0.039*** (0.012) -0.039*** (0.009) -0.028 (0.024) -0.053 (0.018) 

2,S
itF or 2,S

itW     0.011 (0.018) 0.017 (0.013) 
3

itF or 3
itW   -0.029 (0.019) 0.019 (0.016) -0.136*** (0.037) -0.064** (0.030) 

3,S
itF or 3,S

itW     -0.023 (0.019) -0.041 (0.015) 

Const  1.186*** (0.261) 0.986*** (0.273) 1.121*** (0.339) 2.255*** (0.583) 2.500*** (0.624) 
ρ  -0.238*** (0.023) -0.214*** (0.025) -0.217*** (0.004) -0.233*** (0.035) -0.246*** (0.034) 

*, **, *** = significant at 10%, 5%, and 1% level. 
Figures in parenthesis are standard errors. 
All regressions include year-, region-, and sector-dummy variables 

 

                                                 

7  This finding is in contrast to that of Winston (2001) who found the effect of external knowledge in the 

Taiwanese electronics industry was almost three times as large as the internal knowledge effect.  He attributed 

his finding to the possibility of omitting the effects of local public goods available to all firms in a given 

location. Also, instead of annual date, his data is based on census collected every 5 years. 
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By comparing the magnitude of L
itΘ

)
 across L, we will be able to determine the extent of 

knowledge spillovers across the three shells representing increasing measures of physical 

distance.  It is clear from examining the magnitudes of L
itΘ

)
 in column 3 that physical 

proximity to knowledge source matters.  In fact, 321
ititit Θ>Θ>Θ

)))
 implies that knowledge 

spillover weakens monotonically with increasing distance from plant i.  The null hypothesis 

that all these three coefficients equal each other is rejected at the 1% significance level.  

L
itF  is defined as the natural log of the number of plants in the location L regardless of sector 

classification and acts as a proxy for the extent of human interaction or number of 

opportunities a plant has to combine knowledge and produce new ideas.  While 1ˆ
itF  is not 

statistically different than zero, the coefficient estimate of 2
itF  is positive, statistically 

significant and greater in magnitude than 3
îtF .  Thus, in this case the distance effect on the 

extent of knowledge spillover is less clear than that measured by external knowledge.8 

Perhaps this is because L
itF  also captures a stronger negative local competition effect from 

the closest neighbors. Our subsequent specifications attempt to control for such effects by 

using the number of workers in neighboring firms, separating firms according to industrial 

sectors, and differentiating firms according to their level of knowledge.   

The inclusion of L
itΘ  and L

itF  has predictable effects on the remaining parameters of the 

model.  In particular, there is negligible change in the effect of a plant’s own productivity on 

its future productivity, itθ
)

, suggesting little correlation between current TFP and measures of 

external knowledge stocks and therefore alleviating the concern that the L
itΘ

)
 may be picking 

up the effects of local public goods available to all plants in a given location. 

                                                                                                                                                        

 

8 When we collapse the model into two locations by combining locations 1 and 2 and treating them as a single 

location, our results (not reported in the table) indicate that 21+
itF  > 3

itF .  That is, stronger effects that are also 

statistically significant (0.004) come from a greater number of neighbours in the inner shells.  The magnitude 

of the effects, however are tiny compared to the effect from the external knowledge spillovers generated by 

high productivity neighbours. 



15 

The corresponding results based on the natural log of the number of workers in the 

neighboring plants ( L
itW  and LS

itW , ) are reported in column 4 of Table 3. If we compare these 

results to those reported in the third column of the same table, we can see little difference in 

terms of L
itΘ

)
 for all L. This supports our observation about the robustness of L

itΘ
)

 with respect 

to the presence of other independent variables. The main difference of the two results is in the 

coefficient estimates for 1
itF  and 1

itW . While the coefficient estimate of 1
itF  is negative and 

insignificant, 1ˆ
itW  is positive and statistically significant. This is probably because number of 

workers captures less of the negative local competitive effects and/or more of the positive 

spillover externalities. 

To summarize, the estimation results provide evidence of the importance of physical 

proximity to sources of new knowledge in future productivity.  Furthermore, there is some 

evidence that having more plants to interact with in a closer location has a positive, although 

very small effect on future productivity. 

4.2. Technological Proximity Matters More as Physical Distance Increases  

Our next model specification incorporates a test for technological proximity.  In order to test 

the hypothesis that local knowledge spillovers are stronger among plants that share the same 

4-digit ISIC industrial sector, we construct the natural log of median TFP of all neighboring 

plants, LS
it

,Θ , and the natural log of the number of plants, LS
itF , , for each location/sector 

combination and added them to the previous specifications.   

The results are displayed in the fifth9 column of Table 3.  Three key features stand out from 

among the figures.  First, 1
itΘ

)
 is even higher than before (0.101) relative to 2

itΘ
)

 and 3
itΘ

)
 , 

reinforcing the importance of physical proximity to neighboring plants with high TFP.  

Second, while we find evidence of positive intra-sector knowledge spillover in all three 

locations, those in the outer two shells ( 2,S
itΘ and 3,S

itΘ ) are larger in magnitude compared to 

intra-sector spillover in the closest shell ( 1,S
itΘ ) as well as the their respective knowledge 

spillover from being in a specific location ( 2
itΘ  and 3

itΘ ).  These results indicate that as 

                                                 

9  The last column of Table 5 summarizes the estimates of the corresponding model based on the number of 

workers. Since the coefficient estimates of both models are quite similar, we discuss only the results based on 

the number of firms. 
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physical distance increases, technological proximity is a more important determinant of 

knowledge spillovers relative to geographical proximity.  Finally, the coefficients on both, 
L

itF  and LS
itF , , the number of plants in each location and each sector/location combination, 

respectively, are not statistically significant.  The exceptions are the number of plants in the 

closest location bearing a positive coefficient and the number of plants in the same sector in 

that location bearing a negative coefficient.10  The magnitudes of both coefficients are very 

small relative to the coefficients representing median TFP of any given location.    

In our final specifications, we take a closer look at the effect of increased opportunities to 

interact with other plants by breaking down the number of plants in each location, L
itF  

productivity quartiles.  If high productivity neighbors are better sources of local knowledge 

spillovers than low productivity neighbors, then the spillovers associated with the number of 

high productivity neighbors should be greater than those associated with the number of low 

productivity neighbors.  To test this hypothesis, we construct TFP quartiles, L
itk FQ  for 

k=1,2,3,4.  For instance if k=1, then L
itFQ1  is the number of plants in the same location that 

fall in the top quartile of the TFP distribution of all plants in that location L11.   

The results are reported in the third column of Table 5.  The estimated coefficients of the 

number of plants in the top one and/or two TFP quartiles are generally positive and 

significant while those of the bottom-half are either negative and significant or not 

statistically significant.  This is strong evidence that a plant’s future productivity is affected 

by those plants located in the top half of the productivity distributions in each location. 

                                                 

10 The negative coefficient is more consistent with the importance of local competition rather than local 

knowledge spillovers. For example, it is possible that local plants operating in the same industry are 

competing for similar factor inputs. This competition would result in higher input costs, lowering TFP, so that 

if the negative competitive effect from having more neighbours dominates its positive knowledge spillovers 

effects, accounting for negative estimated coefficient. 

 

11 We also constructed the corresponding measures based on the number of workers and ran separate 

regressions. These results are available upon request.   
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Table 5: Estimates for knowledge-evolution equations - all sector quartiles 
 

Regressors Model 1A Model 1A 
  All-Quartiles 

itN  -0.013** (0.006) -0.006 (0.009) 

ita  -0.013*** (0.002) -0.012*** (0.003) 

itθ  0.653*** (0.004) 0.689*** (0.006) 
1
itΘ  0.079*** (0.008) 0.078** (0.033) 
2
itΘ  0.056*** (0.0125) -0.230*** (0.053) 
3
itΘ  -0.068** (0.027) -0.221 (0.150) 
1

itF   -0.002 (0.002)  
2

itF   0.005*** (0.002)  
3

itF   -0.009*** (0.003)  
1

1 itFQ    0.011** (0.004) 
1

2 itFQ    -0.002 (0.004) 
1

3 itFQ    -0.004 (0.004) 
1

4 itFQ    0.004 (0.004) 
2

1 itFQ    0.040*** (0.007) 
2

2 itFQ    0.021*** (0.007) 
2

3 itFQ    -0.040*** (0.007) 
2

4 itFQ    -0.008 (0.007) 
3

1 itFQ    -0.024 (0.024) 
3

2 itFQ    0.094*** (0.024) 
3

3 itFQ    -0.099*** (0.024) 
3

4 itFQ    0.007 (0.017) 

Const  0.073*** (0.026) 0.090** (0.035) 
Observations 34347 18203 
*, **, *** = significant at 10%, 5%, and 1% level. 
Figures in parenthesis are standard errors. 
All regressions include year-, region-, and sector-dummy variables 

 

4.3. Sectoral Variation 

Tables 6 and 7 repeat the specifications in models 1 and 2 in Table 3 separately for seven key 

two-digit ISIC to see if the importance of local knowledge spillovers differs across industrial 



18 

sectors.  The only difference in the regressions in these tables is that we reduce the number of 

locations from three to two because the number of observations in each location falls 

significantly in going to the individual sector analysis.   

In examining the coefficient estimates for the external TFP variables L
itΘ  in Table 6, our 

results indicate that the degree and significance of physical proximity matters in the majority 

of the sectors under consideration, with 1
itΘ  > 2

itΘ .  1ˆ
itΘ is positive and statistically significant 

in 4 out of the 7 sectors, ranging from .05 in textile and wood products industries to 0.147 in 

food.  Physical proximity does not appear to matter at all in the three industries of 

paper/printing/publishing sector, the nonmetallic mineral products sector, and fabricated 

metal products, electronics, machinery and transport equipment sector.  

As at the aggregate level, the results of the estimated coefficients on L
itF  at the level of the 

individual sectors are either not statistically significant or a fraction of the magnitude of the 

effect captured by L
itΘ . For instance, in the wood products sector, the coefficient on number 

of plants in the closer physical location (0.013) is larger than its counterpart in the farther 

location (0.004) but significantly smaller than the coefficient on 1,S
itΘ  (0.048).   

Overall, the sectoral estimation results reinforce the pattern found at the aggregate level 

although it is clear that the extent of knowledge spillovers and how it is affected by 

geographical distance does vary across sectors.  This finding is consistent with the findings of 

other studies on knowledge spillovers, such as Anselin, Varga, and Acs (2000) and Audretsch 

and Feldman (1996b), where the importance of sectoral variations are also documented. 

5. Summary and Conclusions 

In this paper, we develop empirical measures of knowledge spillovers that are broader then 

existing measures in order to test the dynamic productivity effects of knowledge stocks based 

on physical and technological proximity.  Instead of focusing on specific sources of 

knowledge, we follow Winston’s (2002) approach and use TFP to measure a plant’s 

knowledge.   

In our model, knowledge spillovers is determined by the level of knowledge accessed as well 

as the extent of interactions the plant has with other plant in each location and/or industrial 

sector.  The evolution of a firm’s knowledge is specified as a reduced form equation that 

estimates a plant’s future TFP as a function of its current TFP, location-specific knowledge 
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stocks and other plant characteristics.  The estimation accounts for endogenous plant exit by 

employing the Heckman selection model.   

 

Table 6: Estimated knowledge-evolution (Model 1A) based on  

2-digit sector data, 2-location shells 

 
 Sector 
 All 31 32 33 34 35 36 38 

itN  -0.013** -0.010 -0.006 -0.026 0.036 -0.020 -0.031 0.000 
 (0.006) (0.010) (0.013) (0.022) (0.036) (0.025) (0.020) (0.022) 

ita  -0.013*** -0.013*** -0.026*** 0.009 -0.016 -0.002 -0.022*** -0.002 

 (0.002) (0.003) (0.004) (0.008) (0.010) (0.007) (0.006) (0.007) 

itθ  0.646*** 0.665*** 0.635*** 0.573*** 0.758*** 0.711*** 0.494*** 0.695*** 

 (0.004) (0.007) (0.010) (0.016) (0.022) (0.088) (0.014) (0.014) 
1
itΘ  0.132*** 0.147*** 0.050** 0.048** -0.004 0.112*** -0.008 0.041 

 (0.012) (0.081) (0.024) (0.023) (0.047) (0.025) (0.027) (0.030) 
2
itΘ  -0.061** -0.098** 0.038 -0.086* 0.084 -0.046 -0.016 -0.016 

 (0.025) (0.049) (0.045) (0.045) (0.081) (0.059) (0.051) (0.059) 
1

itF  0.004** -0.018*** 0.001 0.013** -0.005 0.007 -0.017*** 0.020*** 

 (0.002) (0.003) (0.003) (0.006) (0.010) (0.005) (0.004) (0.005) 
2

itF  -0.009*** -0.007* 0.003 0.004 -0.017 -0.002 0.015* 0.017* 

 (0.003) (0.004) (0.006) (0.008) (0.018) (0.008) (0.008) (0.010) 
Const  0.071*** 0.130*** 0.037 -0.093* 0.135 0.002 0.011 -0.136** 
 (0.025) (0.027) (0.034) (0.049) (0.084) (0.049) (0.048) (0.061) 
Obs. 36926 12002 6955 4264 1258 3790 3810 2798 
*, **, *** = significant at 10%, 5%, and 1% level. 
Figures in parenthesis are standard errors 
All regressions include year-, and region-dummy variables 
 
 

Our results indicate that the extent of knowledge spillovers among Indonesian manufacturing 

plants is monotonically decreasing with geographical distance.  Furthermore, we also find 

that as distance increases, the extent of knowledge spillovers becomes more dependent on the 

technological proximity.  Finally, we find sectoral variations in the relationship between 

knowledge spillovers and both measures of proximity.  Together these findings are consistent 

with policies that promote clustering for certain manufacturing sectors. 
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Our paper can be extended in a couple of ways that may sharpen the role of physical distance, 

technological similarity and human interactions in determining the magnitude of knowledge 

spillovers.  Using more detailed location information or finer disaggregation of sectors may 

enable us to obtain an improved measure of physical and technological distance between any 

two plants, which can then be used to weight each plant’s knowledge contribution to the 

other.   

Since knowledge is measured as an index of TFP, the methodology used here does not 

require data of specific sources of knowledge, such as R&D expenditures or direct foreign 

investments, information that is often not available or unreliable for many developing 

countries.  Consequently, the model can be applied to a wide range of micro-level data sets 

from countries where knowledge spillovers may not only exist, but have important economic 

effects despite the absence of information about the extent of formal foreign or R&D 

investments. 
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Table 7: Estimated knowledge-evolution (Model 2A) based on  
2-digit sector data, 2-location shells 

 
Regressor Sector 
 All 31 32 33 34 35 36 38 

itN  -0.013** -0.022** -0.003 -0.018 0.013 -0.008 -0.018 -0.003 

 (0.006) (0.011) (0.013) (0.018) (0.037) (0.031) (0.020) (0.026) 

ita  -0.013*** -0.011*** -0.027*** 0.010 -0.022** -0.005 -0.013* -0.004 
 (0.002) (0.003) (0.004) (0.007) (0.010) (0.009) (0.007) (0.008) 

itθ  0.646*** 0.627*** 0.635*** 0.571*** 0.732*** 0.699*** 0.497*** 0.702*** 
 (0.004) (0.009) (0.011) (0.014) (0.022) (0.014) (0.016) (0.017) 

1
itΘ  0.132*** 0.055** 0.106*** 0.091** -0.029 0.092** -0.023 0.048 

 (0.012) (0.023) (0.037) (0.043) (0.077) (0.039) (0.040) (0.055) 
1,S

itΘ  0.132*** 0.084*** -0.026 -0.021 0.047 0.023 0.042 0.001 

 (0.012) (0.013) (0.025) (0.035) (0.058) (0.024) (0.028) (0.027) 
2
itΘ  -0.061** -0.298*** 0.016 -0.143** 0.236** -0.127* 0.055 -0.054 

 (0.025) (0.061) (0.057) (0.064) (0.120) (0.077) (0.084) (0.081) 
2,S

itΘ  -0.061** 0.132** 0.027 -0.012 -0.082 0.056* -0.112*** -0.005 

 (0.025) (0.019) (0.036) (0.042) (0.094) (0.031) (0.039) (0.034) 
1

itF  0.004** -0.018 0.010* -0.011 -0.007 0.009 0.030*** 0.023** 

 (0.002) (0.005) (0.006) (0.012) (0.017) (0.009) (0.011) (0.009) 
1,S

itF  0.004** -0.015*** -0.013** 0.016 0.017 -0.007 -0.038*** -0.013 

 (0.002) (0.003) (0.005) (0.011) (0.017) (0.011) (0.009) (0.010) 
2

itF  -0.009*** -0.003 0.003 -0.000 0.003 -0.001 0.035*** 0.027 

 (0.003) (0.004) (0.007) (0.012) (0.021) (0.015) (0.008) (0.017) 
2,S

itF  -0.009*** -0.013*** 0.004 -0.003 -0.004 0.001 -0.019*** -0.022** 

 (0.003) (0.004) (0.005) (0.009) (0.016) (0.010) (0.008) (0.010) 
Const  0.071*** 0.116*** 0.035 -0.028 0.044 0.006 -0.098 -0.117** 
 (0.025) (0.033) (0.034) (0.056) (0.080) (0.073) (0.057) (0.079) 
Observations 36926 9846 6162 3652 1095 2942 3284 1996 
*, **, *** = significant at 10%, 5%, and 1% level. 
Figures in parenthesis are standard errors. 

All regressions include year, region, and sector dummy variables. 
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Appendix 1 Data Description 

The empirical estimation of this paper is based on annual plant-level census data of all 

medium and large plants in the Indonesian manufacturing sector.12  The focus of our analysis 

is from 1990 to1995, a period during which the country embarked on an export-oriented 

industrialization strategy.  This annual data set contains detailed information on plant 

characteristics, expenditures on various inputs, output and other revenues.  More importantly, 

the data set allows us to track each individual plant's performance from year to year and thus, 

allows us to estimate the exit-decision equation.   

Overall, our raw data set contains annual observations of plants for the six-year period.  For 

instance, there are 16,030 and 21,714 records of manufacturing plants in 1990 and 1995, 

respectively.  Several data cleaning steps were performed to ensure that our empirical 

analysis is consistent with fundamental theories of production.  First, all records with zero or 

negative value of output were eliminated.  Similarly, all records with zero or negative factor 

input values were dropped.  Finally, records of plants with sales of more than 75% of their 

output in industrial services to other plants were also eliminated. The last step avoids 

counting of factor inputs usage twice, since those plants are primarily subcontractors whose 

factor inputs are provided by plants using their services.  

As a result of the cleaning, we are left generally with about fifty percent of the number of 

observations present in the raw data.  For instance, in 1990, the cleaned data set contains 

7240 records, forty five percent of the total records in the raw data set.13  Appendix Tables 1 

and 2 provide the breakdown of the 1990-1994 average number of plants and values of plant 

characteristics by province and by industrial sector.14  Appendix Figure 1 provides a map of 

the provincial distribution of the manufacturing plants in the study in 1992. 

                                                 

12 Defined as plants with total employment of at least 20 workers.   

13  Data for 1995 is not included in Appendix Table 1 since in order to construct the t+1 measures for that year, 

we need to use data for  1996 which we do not have. 

14 During the sample period, Indonesia consisted of 27 provinces, including East Timor.  However, as of May 

2002, East Timor has become an independent country.  In addition, three of the remainder provinces (Maluku, 

West Java, and Riau,) have, since 1999, 2000, and 2002, respectively, been split into several provinces 

resulting in a total of 30 provinces. 
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Appendix Table 1: Plant characteristics by location 

 
Provinces Plants Age Labor Capital TFP 
  (years) (workers) (log) (log) 
Aceh 36 13 193 12.9 0.044 
North Sumatra 446 16 160 12.4 0.002 
West Sumatra 45 15 112 11.7 0.122 
Riau 72 9 416 14.0 0.057 
Jambi 47 10 340 12.9 0.162 
South Sumatra 82 6 155 12.4 -0.011 
Bengkulu 2 14 437 12.5 0.108 
Lampung 66 14 189 12.6 -0.037 
Jakarta 604 14 196 13.1 0.090 
West Java 2077 14 216 12.8 -0.022 
Central Java 1414 20 107 11.2 -0.110 
Yogyakarta 135 20 82 11.8 -0.097 
East Java 1965 16 139 11.7 -0.098 
Bali 159 11 75 11.7 -0.033 
West Nusa Tenggara 63 12 55 10.8 0.019 
East Nusa Tenggara 6 18 32 12.1 -0.221 
East Timor 6 22 27 10.9 0.017 
West Kalimantan 57 13 476 13.9 0.117 
Central Kalimantan 30 10 237 13.3 0.160 
South Kalimantan 83 11 280 12.9 0.096 
East Kalimantan 51 13 523 14.1 0.128 
North Sulawesi 21 9 131 11.9 0.056 
Central Sulawesi 15 13 83 11.7 0.188 
Southeast Sulawesi 109 14 95 11.7 -0.129 
South Sulawesi 25 9 34 10.4 0.192 
Maluku 8 10 678 14.3 0.108 
Irian Jaya 12 9 367 14.1 -0.123 
Total 7637 16 168 12.2 -0.042 
All figures are rounded average across 1990-1994. 

 

To construct the index of total factor productivity i
tTFPln  defined in the text we need to 

construct output, input, and cost-share variables for each plant-year observation.  The value 
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of plant output is measured as the sum of total revenues from sales, repairing and fixing 

services, the revenue from performing subcontracted work, and the change in inventory of 

final goods between the beginning and end of the year.  The value of output is deflated by a 

producer price index defined at the 2-digit industry level.  

 

Appendix Table 2: Plant characteristics by industrial sector 

Sector Plants Age Labor Capital TFP
  (years) (workers) (log) (log)
31 Food, beverages, and tobacco 2491 18 102 11.5 -0.097
32 Textile, garments, and leathers  1463 15 236 12.1 0.043
33 Woods and wood products 951 10 246 12.6 0.033
34 Paper, printing and publishing  293 18 161 13.0 -0.010
35 Chemical, rubber and petroleum products 825 16 232 13.4 0.069
36 Nonmetallic mineral products 826 17 81 11.4 -0.156
37 Metals (iron, steel, nonferrous)  36 10 159 13.9 0.083
38 Fabricated metal products 617 14 179 13.0 0.032
39 Others 135 13 202 12.2 0.020

Total 7637 16 167 12.2 -0.042
All figures are rounded average across 1990-1994 

 

In our analysis, each producer uses four inputs in production: labor, capital, intermediate 

materials, and subcontracting services. The labor input is measured as the number of 

production and non-production workers.  Total payments to labor are measured as total 

salaries to both groups (unfortunately, these do not include fringe benefits and pensions).  

The cost share of labor is the ratio of total payments to labor to the value of plant output.  

The capital input is estimated as the book values of tangible assets, including building, 

machinery, tools, and transport equipment at the beginning of the year.  To control for price 

level changes in new capital goods, using the 1988 book values (1986 in Taiwan) as the basis, 

we deflate the changes in each plant’s book values between the censuses by the producer 

price indices for capital goods. By adjusting these deflated changes to the 1988 book values, 

we scale the 1983 and 1993 (1981 and 1991 in Taiwan) book values of capital goods to the 

1988 basis. The cost share of capital is measured as the residual after subtracting the shares of 

labor, material, and subcontracting services. 

The material input includes raw materials, fuel, and electricity used by the plant.  

Expenditures on raw materials are deflated by the producer price index for manufacturing 
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raw materials.  Fuel expenditures are deflated by an energy producer price index, and 

electricity expenditures are deflated by an electricity producer price index.  The cost share of 

materials is the ratio of total expenditures on intermediate materials to the value of plant 

output.  The cost incurred for the work that is subcontracted out to other plants is included as 

an input expenditure since it comprises the principle’s payments to subcontractors for the 

labor, capital services, and expenditures on fuel and electricity by the latter.  These costs are 

deflated by the producer price index of the industry to construct a subcontracting input.  The 

cost share of subcontracting services is the ratio of the principle’s payments to the plant’s 

output value. 

 

Appendix Figure 1: The Distribution of Indonesian Manufacturing Plants in 1992.
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