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Abstract

This paper presents a Bayesian assessment of the likelihood of unit roots in the

unemployment rates of 16 OECD countries. Bayesian techniques for detecting multi-

ple structural breaks in time series have recently been developed by Wang and Zivot

(2000). I apply these tests to a data set recently analyzed by Papell et al (2000). I also

treat the number of structural breaks as an additional parameter to be estimated. I ¿nd

virtually no support for unit root hysteresis in OECD unemployment rates� this result

is very robust to the choice of prior.

JEL classi¿cation: C220, C110, E240

Keywords: multiple structural breaks� Bayesian analysis� unit root� unemploy-

ment rate
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1 Introduction

In a recent paper, Papell, Murray & Ghiblawi (2000) (PMG hereafter) analyze the time

series properties of unemployment rates in sixteen OECD countries. Their interest is in

whether movements in these series are best described by so-called ‘structuralist’ theories,

which imply that the unemployment rate is stationary about the natural rate, or by theories

incorporating a unit root form of hysteresis, in which shocks to the unemployment rate

persist forever. PMG subject the unemployment rates of the OECD countries to the unit

root tests of Perron & Vogelsang (1992) and Bai & Perron (1998). These tests allow for

the presence of structural breaks under the null hypothesis of a unit root. Allowing for

structural breaks turns out to be crucial in this instance� when using standard augmented

Dickey-Fuller (ADF) tests, PMG do not reject the unit root null for any of the 16 countries

in their sample. Once allowance is made for structural breaks however, unit roots seem

much less likely� the unit root null is rejected in ten countries. Further tests that allow for

multiple breaks provide even more evidence for structuralist theories.

This paper presents a reassessment of PMG’s results from a Bayesian perspective. As is

well-known, the issue of inference about unit roots in time series models is on area in which

Bayesian and frequentist methods can produce dramatically divergent conclusions. Sims

& Uhlig (1991), Uhlig (1994) and Bauwens, Lubrano & Richard (1999) provide thorough

discussions of how and why this divergence occurs. Bayesian techniques for detecting

multiple structural breaks in the level, trend and variance of time series have recently been

developed by Wang & Zivot (2000). I analyze the same data as that used by PMG using the

tests of Wang & Zivot (2000), with the number of structural breaks treated as an additional

parameter to be estimated. Using a range of priors for the autoregressive parameter in the

model, I ¿nd virtually no support for unit root hysteresis in OECD unemployment rates.
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2 The Model and Tests

My analysis proceeds roughly in parallel with that of PMG. I ¿rst conduct unit root tests

which do not allow for structural breaks. The general form of the model is

� � (1)

where is the unemployment rate, � � � � � � � is a -th order lag

polynomial, and � � �. A unit root is present in (1) if � Following Lubrano

(1995), I ¿nd it convenient to re-parameterize (1) as follows:

� � �� � � � (2)

In (2), � � �, and � is a � �-th order polynomial with typical element

given by:

�

I chose , the number of lagged difference terms, by a procedure similar to that of

PMG. Beginning with I estimate (2) and check whether the last lagged difference

term is signi¿cant. If not I reduce by one and re-estimate the model, continuing until

either the last lag is signi¿cant or Here, ‘signi¿cant’ means that zero is not included

in the 95% highest posterior density region for .

For all the models considered here I use prior distributions which are centered on a

random walk with no drift, and which imply a belief that the countries’ unemployment

rates are relatively homogeneous. In particular, the priors are:
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�� �

�� �

� �

� � � �

The inverted gamma � prior for � has a mean of 1, while the average variance of

a random walk model ¿tted to each of the 16 countries in the sample is about 0.96. The

priors are proper, but quite diffuse (unrealistically so in the case of �� this is discussed

further below). Because I use Bayes factors and posterior odds ratios to discriminate be-

tween competing models, it is necessary to use proper priors in order to ensure that these

quantities are well-de¿ned.

2.1 Unit root priors

As pointed out by Lubrano (1995), Bauwens, Lubrano & Richard (1999), and Uhlig (1994),

speci¿cation of the prior on � requires particular care, especially regarding the treatment

of explosive values. The Normal prior as speci¿ed above may be regarded as an unsuitable

prior for time series with possible unit roots, as it puts more weight on the explosive region

(including � and � � ) than the stationary region. Nevertheless, Uhlig (1994)

argues that a Normal prior centred on a random walk is ‘reasonable’ if there is no time

trend in the model (as is the case here). Therefore I use this prior as a convenient base case,

but also conduct inference using four other priors that are arguably more realistic. The

¿rst of these simply tightens the variance in the base prior from 1,000 to 0.5. The second

follows an idea of Lubrano (1995) and Bauwens, Lubrano & Richard (1999), and is a Beta

prior extended to the range � � � � . I set , which restricts � to
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the interval � This value of also favors the non-stationary region by about

two-to-one. The fourth prior is a � distribution on the same extended range as

for Lubrano’s prior. This prior has a mean of 0.82, standard deviation of 0.25, and a mode

at 0.98. Although it favors roots near unity, this prior also makes explosive roots much less

likely than Lubrano’s prior. The ¿nal prior is that of Berger & Yang (1994), extended to

the non-stationary region. This prior is given by

��

�

� � �
�

�
�

� � � �

�

� �

See Bauwens, Lubrano & Richard (1999), p. 177 for more details of this prior. Figure 1

graphs the various priors on the interval � (the � prior is not shown

as it would be indistinguishable from the x-axis).

I investigate the role of these prior distributions on unit root inference by using the

reweighting method described in Geweke (1999). Suppose we have a sequence of draws

of � � from the posterior � � implied by the � prior. Draws from the

posterior implied by a different prior � � can be obtained by simply multiplying the �

by the ratio of the new prior density to that of the �. That is,

�

�
�

�

�
��

��

�

where �� is the one of the alternative prior densities mentioned above.

2.2 Bayesian inference in the multiple break model

Wang & Zivot (2000) have developed Bayesian methods for analyzing time series with an

unknown number of breaks in the mean, trend, and/or variance. Consider a (¿rst-order)

version of equation � with structural breaks in the intercept:
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� � � � � � � (3)

De¿ning to be the indicator function that takes the value if event is true, Wang

and Zivot write �� as a linear regression (conditional on ) with dummy variables:

� � � � � � � � � � (4)

with the time index of the break and the last observation in the sample. Thus, con-

ditional on Bayesian inference in this model is straightforward using natural conjugate

priors on the � and � the residual variance.

To conduct inference on the locations of the breaks ..., Wang and Zivot

specify a discrete prior that is uniform over all ordered subsequences of the time indexes

� of length For example, in a model with 50 observations and 3 breaks, it is

equally likely a priori that the breaks occur at times � or �

Note that in this last sequence, the ¿rst two ‘breaks’ can be thought of as additive outliers.

Papell, Murray & Ghiblawi (2000) require at least 15% of the sample to lie between any

two break dates, whereas I leave the ordering of break dates unrestricted. Wang & Zivot

(2000) then show that the conditional posterior of the break depends only on its

neighbors and Suppose that the interval contains points. The con-

ditional posterior for is then multinomial: � � where � is

the vector obtained by evaluating the likelihood function at each of the possible dates for

properly normalized. See Wang & Zivot (2000) for more details, including extensions

to models with a trend term and regime-speci¿c variances, as well as their Gibbs sampling

algorithm.
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2.3 Inference on the number of breaks

All of the results in Wang & Zivot (2000) are conditional on the number of break points,

Those authors use the Bayesian Information Criterion (BIC) to choose among models with

different values of In this paper, I take a different approach and treat as an additional

parameter to be estimated. To do this I draw on recent results of Carlin & Chib (1995),

Han & Carlin (2001), Godsill (2001), Dellaportas, Forster & Ntzoufras (2002), and Lopes

& West (2000). These papers describe Markov Chain Monte Carlo (MCMC) methods for

conducting inference in situations involving competing models of varying dimension. My

approach in this paper is closest to that of Lopes & West (2000), who use a ‘Metropolized’

version of Carlin and Chib’s method. The algorithm proceeds as follows:

1. Specify an initial number of breaks � where � is the maximum

number of breaks under consideration�

2. Draw a parameter vector �
�

� � � � � � � � � �
�

corresponding to

the -break model�

3. Propose a new number of breaks from a proposal distribution � In gen-

eral, the proposed number of breaks, , can depend on the current number of breaks,

4. Draw the corresponding parameter vector � from a proposal distribution � �

5. Accept the proposed move with probability

� �

�

� �

� �
�
� � � � �

� � � � �
�

� �

� �
�

�

�

�

(the terms in this expression are discussed below)�

6. If the move is accepted, set otherwise keep unchanged�
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7. Go to 2.

This algorithm is referred to as ‘Metropolized Carlin & Chib’ (MCC) by Dellaportas,

Forster & Ntzoufras (2002). Lopes & West (2000) suggest that a more descriptive term

is independence reversible jump MCMC, as it is a special case of the reversible jump

algorithm of Green (1995). The ¿rst three terms in the acceptance probability � are: the

ratio of the likelihood function values for the two models� the ratio of the prior distributions

for the two parameter vectors (note that this is the ratio of the joint priors � � ��,

and the ratio of the two proposal densities. The last term gives the ratio of the transition

probabilities for moves between models with and breaks. In this paper, I make

two assumptions that simplify the calculation of � First, I assume that all models with

are equally a priori, so the � � terms cancel (the choice of a maximum of ¿ve breaks

follows that of Papell, Murray & Ghiblawi (2000)). I also use a uniform proposal density

for � so the ¿nal term is equal to unity. This also means that is independent of

For the proposal distribution � � I use the full conditional posteriors derived in Wang

& Zivot (2000): multinomial for the location of the breaks, Normal for the � and �, and

inverted Gamma for the variance � An alternative method would be to use the estimated

posterior distributions from preliminary model-speci¿c runs. This is the approach taken by

Lopes & West (2000).

As a preliminary step, I estimated models with zero to ¿ve breaks in the intercept term

only. For each of these models, I ran the Gibbs sampler of Wang & Zivot (2000) for 12,500

draws and omitted the ¿rst 2,500. The data are the same as in Papell, Murray & Ghiblawi

(2000), and consist of the annual average unemployment rates for 16 OECD countries.

I then ran the independence reversible jump algorithm for 11,000 iterations, keeping the

last 10,000. The posterior probabilities of the six models can then be estimated by the

frequency of each model’s occurrence in these 10,000 draws. Finally, I base my inference

on the autoregressive parameter � on the output of the preliminary runs, using the estimated
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posterior model probabilities as weights. Although the primary focus of this paper is the

presence or absence of a unit root, a similar procedure can be used to average the posterior

distributions of the break dates.

3 Results

3.1 The number of structural breaks

Table 1 gives the estimated posterior probabilities for each of the six models for each

country. The last column of the table shows the percentage of proposed moves that were

accepted. The results in the table differ substantially from those of Papell, Murray &

Ghiblawi (2000), who use the tests of Bai & Perron (1998) (see their table 3). They ¿nd

one signi¿cant structural break in Belgium, Norway and Sweden� two breaks in Canada,

Denmark, Finland, Ireland, the UK and the US� and three breaks in Spain. The Bai-Perron

tests are not applicable to the other countries since the unit root null cannot be rejected. The

modal values in table 1 correspond to their results only for Norway. In addition, Papell,

Murray & Ghiblawi (2000) prefer a two-break model for Australia, although the unit root

null is not rejected. My results suggest that the no-break and one-break models are about

equally likely (and each about twice as likely as the two-break model). The acceptance

probabilities 	� range from 0.31 for Finland to 0.87 for Japan. On average for all countries,

just over half of the proposed moves were accepted.

3.2 Unit root inference

Several features of the posterior distributions of � are shown in table 2. In addition to the

posterior mean, standard deviation and median, the table gives estimates of the tail areas

of each distribution to the right of � and . I estimated the posterior

densities using the ‘smooth’ command in BACC with a uniform kernel, then computed
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the tail areas using the midpoint of the -ordinates of the resulting ordered pairs. The

unemployment rates in 13 of the 16 countries are clearly stationary, although in some cases

quite persistent. France, Italy and Spain are the only countries for which the posterior

distribution of � has appreciable mass above 0.975. The only country for which there is

clear evidence for a unit root is France. The median of � is around 0.98, and roughly one-

quarter of each of the various posterior distributions lies to the right of unity. The evidence

for non-stationarity in the Italian and Spanish unemployment rates is much weaker. Unless

one adopts the Berger-Yang prior, one would not reject the hypothesis that � was at most

0.975 for these countries at conventional signi¿cance levels. For all of the other countries

and all priors, at least 94 per cent of the posterior distribution of � lies to the left of 0.95.

3.3 Unemployment persistence

The posterior means of � under the various priors are collected in table 3. Once allowance

for structural breaks is made, the persistence of the unemployment rate across the various

countries is remarkably similar. The last two columns of table 3 present estimates of the

half-life of shocks to the unemployment rate. The ¿rst is computed using estimates of �

from an ADF-type regression, while the second uses the maximum value of the posterior

means in the table. Most of these half-lives are under three years, and only three exceed

¿ve years.

4 Discussion and Conclusions

This paper strengthens the results of Papell, Murray & Ghiblawi (2000) by adopting Bayesian

inferential procedures that allow for model uncertainty as well as parameter uncertainty.

These results provide strong support for the intuition that since the unemployment rate is

a bounded series, it cannot have a unit root. The degree of persistence in the unemploy-
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ment rates of these countries is remarkably similar once allowance is made for an unknown

number of structural breaks. One interpretation of this result is that differences in social

welfare systems, minimum wage laws and so on may account for variation in the average

level of unemployment rates, but do not affect their dynamic properties.
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Table 1: Posterior model probabilities
number of breaks

0 1 2 3 4 5 	�
Australia 31.69 32.09 16.45 9.35 5.49 4.93 0.53
Belgium 10.28 12.46 15.8 8.17 22.91 30.38 0.52
Canada 28.04 27.49 11.99 10.17 15.2 7.11 0.55

Denmark 11.89 19.48 14.31 16.06 22.71 15.55 0.65
Finland 3.33 5.93 7.51 12.01 33.65 37.57 0.31
France 40.34 37.29 13.36 6.25 1.11 1.65 0.50

Germany 30.64 25.13 11.3 5.77 14.64 12.52 0.41
Ireland 17.2 29 12.33 10.17 23.26 8.04 0.49

Italy 28.85 34.71 12.51 7.17 6.64 10.12 0.51
Japan 19.4 25.95 18.95 18.06 12.99 4.65 0.87

Netherlands 14.05 18.25 5.82 4.02 39.78 18.07 0.43
Norway 29.7 28.67 17.22 14.99 8.86 0.56 0.58

Spain 10.01 26.22 16.73 14.39 19.24 13.41 0.58
Sweden 2.21 5.81 7.12 13.71 39.76 31.39 0.36

UK 7.8 12.9 9.33 16.7 31.45 21.82 0.51
US 25.97 28.6 16.15 11.27 11.41 6.6 0.56

14



Table 2: Quantiles and tail areas of posterior distributions of �, various priors
Prior

Quantile � � Lubrano �(10,2) Berger-Yang
Australia

mean 0.75 0.75 0.75 0.76 0.76
sd 0.05 0.05 0.05 0.05 0.05

median 0.76 0.76 0.76 0.76 0.77
0.90 0.00 0.00 0.00 0.00 0.00
0.95 0.00 0.00 0.00 0.00 0.00

0.975 0.00 0.00 0.00 0.00 0.00
1 0.00 0.00 0.00 0.00 0.00

Belgium
mean 0.67 0.67 0.67 0.68 0.67

sd 0.04 0.04 0.04 0.04 0.04
median 0.68 0.68 0.68 0.68 0.68

0.90 0.00 0.00 0.00 0.00 0.00
0.95 0.00 0.00 0.00 0.00 0.00

0.975 0.00 0.00 0.00 0.00 0.00
1 0.00 0.00 0.00 0.00 0.00

Canada
mean 0.78 0.78 0.78 0.78 0.78

sd 0.05 0.05 0.05 0.05 0.05
median 0.78 0.79 0.79 0.79 0.79

0.90 0.01 0.01 0.01 0.01 0.01
0.95 0.00 0.00 0.00 0.00 0.00

0.975 0.00 0.00 0.00 0.00 0.00
1 0.00 0.00 0.00 0.00 0.00

Denmark
mean 0.73 0.73 0.73 0.74 0.74

sd 0.07 0.07 0.07 0.07 0.07
median 0.72 0.72 0.73 0.74 0.74

0.90 0.01 0.01 0.01 0.01 0.01
0.95 0.00 0.00 0.00 0.00 0.00

0.975 0.00 0.00 0.00 0.00 0.00
1 0.00 0.00 0.00 0.00 0.00
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Table 2: continued
Prior

Quantile � � Lubrano �(10,2) Berger-Yang
Finland

mean 0.64 0.65 0.65 0.69 0.68
sd 0.14 0.13 0.14 0.13 0.15

median 0.66 0.67 0.68 0.70 0.67
0.90 0.04 0.04 0.05 0.06 0.10
0.95 0.02 0.02 0.02 0.03 0.06

0.975 0.01 0.01 0.02 0.02 0.04
1 0.01 0.01 0.01 0.01 0.03

France
mean 0.98 0.98 0.98 0.98 0.99

sd 0.03 0.03 0.03 0.03 0.03
median 0.98 0.98 0.99 0.98 0.98

0.90 0.99 0.99 0.99 0.99 1.00
0.95 0.76 0.76 0.77 0.76 0.87

0.975 0.48 0.48 0.50 0.48 0.67
1 0.24 0.24 0.26 0.24 0.32

Germany
mean 0.80 0.80 0.80 0.80 0.80

sd 0.05 0.05 0.05 0.05 0.05
median 0.79 0.79 0.79 0.79 0.79

0.90 0.01 0.01 0.02 0.02 0.02
0.95 0.00 0.00 0.00 0.00 0.00

0.975 0.00 0.00 0.00 0.00 0.00
1 0.00 0.00 0.00 0.00 0.00

Ireland
mean 0.76 0.76 0.76 0.76 0.76

sd 0.05 0.05 0.05 0.05 0.05
median 0.77 0.77 0.78 0.78 0.78

0.90 0.00 0.00 0.00 0.00 0.01
0.95 0.00 0.00 0.00 0.00 0.00

0.975 0.00 0.00 0.00 0.00 0.00
1 0.00 0.00 0.00 0.00 0.00
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Table 2: continued
Prior

Quantile � � Lubrano �(10,2) Berger-Yang
Italy

mean 0.90 0.90 0.90 0.90 0.91
sd 0.04 0.04 0.04 0.04 0.04

median 0.89 0.90 0.90 0.90 0.90
0.90 0.50 0.51 0.52 0.52 0.60
0.95 0.12 0.13 0.14 0.13 0.21

0.975 0.04 0.04 0.04 0.04 0.09
1 0.01 0.01 0.01 0.01 0.03

Japan
mean 0.83 0.83 0.84 0.84 0.84

sd 0.05 0.05 0.05 0.05 0.05
median 0.83 0.83 0.83 0.83 0.84

0.90 0.10 0.10 0.11 0.11 0.13
0.95 0.01 0.01 0.01 0.01 0.02

0.975 0.00 0.00 0.00 0.00 0.01
1 0.00 0.00 0.00 0.00 0.00

Netherlands
mean 0.73 0.74 0.74 0.75 0.75

sd 0.08 0.08 0.08 0.08 0.08
median 0.75 0.75 0.75 0.76 0.76

0.90 0.03 0.03 0.04 0.04 0.05
0.95 0.00 0.00 0.00 0.00 0.01

0.975 0.00 0.00 0.00 0.00 0.00
1 0.00 0.00 0.00 0.00 0.00

Norway
mean 0.63 0.64 0.64 0.64 0.64

sd 0.05 0.05 0.05 0.05 0.05
median 0.63 0.63 0.63 0.64 0.63

0.90 0.00 0.00 0.00 0.00 0.00
0.95 0.00 0.00 0.00 0.00 0.00

0.975 0.00 0.00 0.00 0.00 0.00
1 0.00 0.00 0.00 0.00 0.00
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Table 2: continued
Prior

Quantile � � Lubrano �(10,2) Berger-Yang
Spain

mean 0.87 0.87 0.88 0.88 0.89
sd 0.04 0.04 0.04 0.04 0.05

median 0.90 0.90 0.90 0.90 0.90
0.90 0.25 0.25 0.27 0.26 0.35
0.95 0.06 0.06 0.07 0.07 0.14

0.975 0.03 0.03 0.03 0.03 0.08
1 0.01 0.01 0.01 0.01 0.04

Sweden
mean 0.59 0.61 0.61 0.67 0.62

sd 0.16 0.15 0.16 0.14 0.16
median 0.55 0.57 0.56 0.60 0.57

0.90 0.02 0.03 0.03 0.04 0.04
0.95 0.01 0.01 0.01 0.01 0.02

0.975 0.00 0.00 0.00 0.00 0.01
1 0.00 0.00 0.00 0.00 0.00

UK
mean 0.60 0.61 0.61 0.62 0.61

sd 0.07 0.07 0.07 0.07 0.07
median 0.63 0.64 0.64 0.65 0.64

0.90 0.00 0.00 0.00 0.00 0.00
0.95 0.00 0.00 0.00 0.00 0.00

0.975 0.00 0.00 0.00 0.00 0.00
1 0.00 0.00 0.00 0.00 0.00

US
mean 0.67 0.67 0.67 0.68 0.68

sd 0.06 0.06 0.06 0.06 0.06
median 0.66 0.67 0.67 0.67 0.67

0.90 0.00 0.00 0.00 0.00 0.00
0.95 0.00 0.00 0.00 0.00 0.00

0.975 0.00 0.00 0.00 0.00 0.00
1 0.00 0.00 0.00 0.00 0.00
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Table 3: Posterior means of � and half-lives
N(1,1000) N(1,0.5) Lubrano �(10,2) B-Y half-life

ADF max
Australia 0.75 0.75 0.75 0.76 0.76 13.05 2.51
Belgium 0.67 0.67 0.67 0.68 0.67 14.09 1.76
Canada 0.78 0.78 0.78 0.78 0.78 7.16 2.85

Denmark 0.73 0.73 0.73 0.74 0.74 14.56 2.33
Finland 0.64 0.65 0.65 0.69 0.68 inf 1.88
France 0.98 0.98 0.98 0.98 0.99 inf 47.13

Germany 0.80 0.80 0.80 0.80 0.80 29.89 3.16
Ireland 0.76 0.76 0.76 0.76 0.76 13.10 2.56

Italy 0.90 0.90 0.90 0.90 0.91 inf 7.55
Japan 0.83 0.83 0.84 0.84 0.84 14.84 4.03

Netherlands 0.73 0.74 0.74 0.75 0.75 11.52 2.40
Norway 0.63 0.64 0.64 0.64 0.64 5.79 1.56

Spain 0.87 0.87 0.88 0.88 0.89 73.65 5.81
Sweden 0.59 0.61 0.61 0.67 0.62 3.93 1.71

UK 0.60 0.61 0.61 0.62 0.61 12.25 1.44
US 0.67 0.67 0.67 0.68 0.68 2.57 1.80
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Figure 1: Prior distributions
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