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Abstract

This paper has three main objectives. First, we re-examine some recent findings

that suggest a structural decline in the variance of GDP growth in the United States.

We estimate a univariate model in which both the mean growth rate of GDP and

its variance are influenced by latent state variables that follow independent Markov

chain processes. We are particularly interested in evidence of increased stability in

the U.S. economy, either because of reduced volatility or a narrower gap between

growth rates in expansions and recessions. Second, we investigate whether a similar

phenomenon has occured in other countries. Finally, we explore the extent to which

this more general model is better able to describe the shape of actual business cycles.

We find evidence of a reduction in GDP volatility in U.S. data, beginning in late

1984. However, it is less clear that this change represents a structural break. The

recent U.S. recession has reduced the probability of being in the low-variance state.

Using data from Australia, Canada, Germany, Japan and the United Kingdom,

we find evidence of a similar reduction in volatility of GDP growth. The shift for

Japan apparently happened in about 1974, and the past decade’s poor economic

performance seems to have brought a return to the high-variance state. Apart from

Germany, the variance reductions in the other countries all occurred within a ten

year period between the early 1980’s and the early 1990’s.

Finally, when we test for non-linear effects using Bayes factors, we find that

allowing for a switching variance is much more important than a switching mean.

Although the hypothesis of homoscedasticity is overwhelmingly rejected, there is

little evidence that this model is better able to capture the shape of actual business

cycles.

JEL classification: E32, E37, C22

Keywords: Business cycles, volatility, Markov switching, Bayes factor



1. Introduction and motivation

A decline in the volatility of the output in many of the world’s major economies since

the mid-1980’s has been considered by many as a triumph of central bankers over the

business cycle. Whether or not any such stabilization is a result of nature, in the form

of good luck or structural change, or nurture by central bankers is an intriguing question.

However, the first step in answering such questions is to document the empirical structure

of any apparent stabilization and this paper focuses on the measurement of the reduction

in output volatility. In particular, we ask whether the mollification of output growth may

be attributed to a decline in the volatility of output, a decline in the difference between

mean growth rates in recessions and expansions, or both.

Similar questions have recently been posed by (McConnell and Perez-Quiros 2000),

(Kim and Nelson 1999a) and (Blanchard and Simon 2001) for the United States and

(Mills and Wang 2000) for the G7 countries. Each of these papers models output growth

as a univariate autoregressive process. Blanchard and Simon estimate a rolling regression

over twenty quater periods and investigate the behavior of the standard deviation of the

residual, while the other papers employ a Markov switching approach in which both the

mean growth rate and residual variance are driven by independent, state variables.

While all authors document strong evidence of a decline in the volatility of output

growth during the post-World War II periods there is some disagreement over the nature

of this change. (McConnell and Perez-Quiros 2000), (Kim and Nelson 1999a) and Mills and

Wang (2000) find evidence of a one off break in output growth, while Blanchard and Simon

(2001) argue that the decline in output volatility has been a gradual process. In addition

there are questions about whether there has been a reduction in the difference between
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mean growth rates. (McConnell and Perez-Quiros 2000) cannot reject the hypothesis that

mean growth rates in recessions and expansions are constant across a one off break in

the variance of US real GDP growth. However, (Kim and Nelson 1999a) find evidence

that there has been narrowing of the gap between mean growth rates in expansions and

recessions associated with the decline in the variance of US output growth. The other

important difference between the Markov switching models estimated by McConnell and

Perez-Quiros and Kim and Nelson is that McConnell and Perez-Quiros allow for general

Markov switching in the variance, while Kim and Nelson allow for only a one-time switch

in the variance of GDP growth.1 These differences lead us to ask the following questions.

First, since the McConnell and Perez-Quiros model nests that of Kim and Nelson, what

is the evidence in favour (or against) this restriction. Second, is there any evidence for

similar changes in the behaviour of GDP growth in other countries?

Of this group of papers, only (McConnell and Perez-Quiros 2000) and (Blanchard and

Simon 2001) focus on what may have been the cause of the decline in output volatility.

McConnell and Perez-Quiros argue that it can be traced to a reduction in the volatility of

durable goods output, and in particular to a drop in the share of durable goods accounted

for by inventory investment. Blanchard and Simon, however, conclude that there are

many “proximate causes” for the stabilisation of output volatility, but identify the more

important to be the volatility of inflation and a decrease in consumption and investment

volatility.

1The other obvious difference between the three Markov Switching papers cited is that McConnell

and Perez-Quiros and Mills and Wang use maximum likelihood techniques, in which inferences on the

unobserved states are conditional on the point estimates of the other parameters. On the other hand,

Kim and Nelson employ Bayesian methods that allow for inference on the states and parameters to be

conducted in a symmetric way.
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A second major motivation for this paper stems from the work of (Harding and Pagan

2002) and (Hess and Iwata 1997). The ability to produce plausible business cycle features

is an important test of any model that purports to explain the business cycle. Both

of these papers evaluate several popular models of real GDP growth and find that they

generally do not match cyclical characteristics of the observed data. Harding and Pagan

develop a new set of nonparametric tools for analysing business cycle characteristics and

use them to assess the fit of various models of the cycle, including Hamilton’s basic Markov

switching model. Amongst their findings is that Markov switching models perform quite

poorly relative to a simple AR (1) model. A consequence of this is that Markov-switching

non-linear effects do not appear to be very important for describing actual business cycles,

despite their popularity and intuitive appeal. To investigate this issue further, we treat

the Harding-Pagan statistics as additional functions of interest by mapping the posterior

distributions of the model’s parameters into posterior distributions of these statistics,

based on a simulated data series for each posterior draw. We also exploit a major advantage

of our Bayesian estimation methods over classical maximum likelihood: we are able to test

for the presence of non-linearity directly through the use of Bayes factors.

To summarise our main findings, we find evidence of a reduction in GDP volatility

in U.S. data, beginning in the third quarter of 1984. This is similar to the findings of

(McConnell and Perez-Quiros 2000) and (Kim and Nelson 1999a), although they date the

volatility reduction from the first quarter of 1984. However, we also find evidence that this

is a temporary switch in regime rather than a structural break; the recent U.S. recession

has reduced the probability of being in the low-variance state.

Using data from Australia, Canada, Germany, Japan and the United Kingdom, we

find evidence of a similar reduction in volatility of GDP growth. The shift for Japan
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happened in about 1974, but the past decade’s poor economic performance seems to have

brought a return to the high-variance state. Apart from Germany, the variance reductions

in the other countries all occurred within a ten year period between the early 1980’s and

the early 1990’s. The German data clearly shows the effects of reunification in 1991; the

combination of West German and unified German data makes the interpretation of this

data somewhat problematic.

Finally, when we test for non-linear effects using Bayes factors, we find that allowing

for a switching variance is much more important than a switching mean. In a different

context, (Sims 2001) and (Sims and Zha 2002) also argue that time-varying volatility

produces greater improvements in fit (relative to a linear model) than does time variation

in the mean or other coefficients. According to our estimated Bayes factors, the hypothesis

that a linear mean process is sufficient to describe GDP growth is roughly an even-money

bet, but the hypothesis of homoscedasticity is overwhelmingly rejected. We also use the

non-parametric measures of business cycle features recently developed by (Harding and

Pagan 2002) to assess the model’s fit to the data. Despite the statistical evidence favouring

the switching variance model, there is little to suggest that this model is better able to

capture the shape of actual business cycles.

2. The model

Our basic Markov switching model is the same as that of (McConnell and Perez-Quiros

2000). The growth rate of real GDP, yt, follows an autoregressive (AR) process with a

switching mean:
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φ(L)(yt − µ(St,Dt)) = et, (2.1)

et ∼ iidN(0, σ2 (Dt)).

Here yt is the first difference of the log of real GDP and µ(St,Dt) is the mean of yt

conditional on the unobserved state vectors St and Dt. In addition, the residual variance

depends on the value of Dt. Thus the mean growth rate µ(St, Dt) can be affected by the

latent process underlying volatility. Specifically, we have

µ(St,Dt) = µ0 + µ00Dt + (µ1 + µ11Dt)St (2.2)

and

σ2 (Dt) = σ20 (1−Dt) + σ21Dt (2.3)

= σ20 (1 + h1Dt) ,

with h1 =
³
σ21
σ20
− 1
´
.We identify the low-growth state with the event St = 1 by restricting

the mean growth rates in this state, (µ0 + µ1) and (µ0 + µ1 + µ00 + µ11), to be negative.

This restriction differs from that of (Kim and Nelson 1999a), who imposed the restriction

that the mean growth rate in expansions was lower (and that in recessions higher) in the

low-variance state than in the high-variance state. In other words, Kim and Nelson impose

a narrower gap between the average growth rate in expansions vis-a-vis contractions after

the structural break. In addition, we restrict h1 < 0, identifying the low-variance state as

Dt = 1.
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We assume that the latent state variables St and Dt are generated by independent

first-order hidden Markov chains with transition probabilities Pr[St = 1|St−1 = 1] = p11,

Pr[St = 0|St−1 = 0] = p00, Pr[Dt = 1|Dt−1 = 1] = q11, and Pr[Dt = 0|Dt−1 = 0] = q00.The

model of (Kim and Nelson 1999a) results from setting q11 = 1, so that Dt = 1 is an

absorbing state. Finally, following (Kim and Nelson 1999a) and (McConnell and Perez-

Quiros 2000), we specify a first-order autoregression for deviations around the Markov

trend, so that φ (L) = 1− φL.

Equation (2.1) is usually estimated by maximum likelihood, however a drawback of

this approach is that it requires a degree of approximation when making inferences about

St and Dt. To see this note that as the state variables are unobserved, estimation of

(2.1) is a two stage process. In the first stage, the vector of unknown parameters θ =

(p00, p11, q00, q11, φ(L), µ0, µ1, µ00, µ11, σ
2
1, σ

2
2)
0 is estimated so as to maximize the log of the

unconditional density of yt. This is found to be the sum of the joint distributions across

all possible states. When there are only two states under consideration (and conditional

on Dt),

f(yt; θ,Dt) =
X1

j=0
p(yt, St = j; θ,Dt), j = 0, 1.

Once estimates θ̂ of θ have been obtained, inference about the probability of being in a

particular state at a given point in time may be made by using the definition of conditional

probability:

P (St = j|yt;bθ,Dt) =
p(yt, St = j;bθ,Dt)

f(yt;bθ,Dt)
.

Therefore, estimates of the states do not reflect the uncertainty inherent in the estimates
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of θ. A Bayesian framework offers an alternative method for making inferences about the

state vector. Unlike the classical approach, Bayesian analysis treats both the parameters

of the model and the unobserved states as random variables, with inference about St

drawn from their joint distribution conditional upon the data, p(St, θ|yt) rather than the
conditional distribution, P (St = j|yt;bθ).

Recent work by (Albert and Chib 1993)and (McCulloch and Tsay 1994) has demon-

strated that Bayesian estimation of Markov switching models is relatively simple to imple-

ment using the Gibbs sampler. Gibbs sampling is a Markov chain Monte Carlo (MCMC)

method of simulating complex joint and marginal distributions by drawing repeatedly

from the conditional distributions, which are much simpler in many cases. As noted by

Albert and Chib (1993), the Bayesian approach allows us to treat the unobserved states,

{St, Dt}Tt=1, as additional parameters to be estimated (through simulation), along with the
unknown parameters, θ.

The details of the Gibbs sampling algorithm and the conditional distributions involved

are given in (Kim and Nelson 1999a), except that in our model the state variable Dt can

be treated in exactly the same way as St (i.e., via multi-move rather than single-move

sampling; see (Kim and Nelson 1999c)). In our estimation we generate 11,000 iterations

and use the final 10,000 for inference. Our prior distributions and starting values are

discussed below, in section 3.

In addition to estimating the parameters of the model, we are also interested in testing

whether this non-linear model fits the data better than the linear alternative. The model

in equations (2.1) to (2.3) reduces to a linear AR (1) if µ1 = µ00 = µ11 = 0, and σ
2
1 = σ22. As

is now well-known, standard likelihood ratio tests cannot be used in this situation because

of Davies’ problem (the existence of nuisance parameters that are not identified under the
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null of linearity), and methods such as those of (Hansen 1992) or (Hansen 1996) must

be employed. In contrast, Bayesian tests of this hypothesis using Bayes factors are fairly

straightforward. As shown in (Koop and Potter 1999), the evidence in favor of linearity

can be assessed using the Savage-Dickey Generalized Density Ratio (also see (Verdinelli

and Wasserman 1995)). Following (Koop and Potter 1999), we compute Bayes factors in

favor of µ1, µ00, and µ11 being equal to zero (individually and jointly), as well as in favor

of σ21 = σ22.

Finally, we are also interested in how well this model captures various business cycle fea-

tures. In particular, we assess the model’s performance by computing the non-parametric

statistics described in (Harding and Pagan 2002). These are: the average duration and

amplitude of expansions and contractions; the average cumulative output gain (loss) dur-

ing expansions (contractions), and the average ‘excess’ output gained or lost relative to

the ‘triangle’ approximation to business cycle phases.2 (Hess and Iwata 1997) conduct a

similar exercise, focusing on the amplitude and duration of cycles. Following (Harding and

Pagan 2002), we can illustrate their use with the aid of the stylised recession in figure 4.1.

In this figure, points A and C represent the peak and trough of the recession, respectively.

The duration of the contraction (in quarters) and its amplitude (in percent) are easily

interpreted. The cumulated output loss is the area of the triangle ABC plus the area

above the actual path of GDP and the line AC. The excess output loss is the difference

between the cumulated loss and the triangle area.

We treat the Harding-Pagan statistics as additional functions of interest for our pos-

terior simulator, to use the terminology of (Geweke 1999). Given the output from our

posterior simulator, we generate a data series implied by each draw of θ (conditional on

2These measures are described in detail in (Harding and Pagan 2002).
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the actual initial conditions), and compute the amplitudes, durations, etc. across Monte

Carlo draws. Thus, our method incorporates parameter uncertainty into the simulation-

based analysis of (Harding and Pagan 2002).

The information we have about the expected duration of business cycles is employed

and the prior distributions of p00 and p11 are accordingly set to have means of 0.8 and

standard deviations of 0.16. We use specify relatively non-informative prior distributions

with means of 0 and standard deviations of 1 for the other parameters, with the exception

of the prior mean for the low growth, high variance state, µ1, which is set to -0.5.
3

To start the process of iteration, we set the starting values of p00, p11, q00 and q11 at 0.9,

0.76, 0.9 and 0.76, respectively. Given these values, we constructed initial state vectors S0t

and D0
t via the implied Markov process. The starting values for the remaining parameters

were computed by the least squares regression of yt on a constant, its first lag, S
0
t and D

0
t .

A similar procedure for determining starting values is described in Albert and Chib (1993,

p. 8). To help ensure that the final estimates were not simply artifacts of the starting

values 11,000 draws of the simulation are taken, the first 1,000 of which were discarded.

3. Results

3.1. Parameter estimates

3Adrian Pagan has pointed out to us that this prior specification implies a negative average growth

rate for GDP. However, as the prior standard deviation for average growth is relatively large we do not

feel that this has undluy influenced our results. To check this we re-estimated our models with alternative

priors that implied a positive average growth rate and found no substantial differences to our results. We

also note that (Kim and Nelson 1999b) use the same prior for de-meaned GDP growth, implying average

growth that is below trend.
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The results of estimation of (2.1) are presented in table 1, along with our prior means

and standard deviations. The Markov switching models tend to imply somewhat longer

average phases than we observe in the data. For example, the expected duration of the

high-growth state for Australia (given by (1− p00)
−1) is 30 quarters.4 The average length

of expansion periods in the actual data is 17.5 quarters, based on the BBQ dating algorithm

of (Harding and Pagan 2002) (see table 4 below). Similarly, the implied average length of

the low-growth state for Australia is 3.6 quarters. Comparable expansion and contraction

durations for the U.S. are 28.4 and 4.1 quarters implied by the model versus 21 and 3.2

quarters in the data. For the U.K. the corresponding figures are 32.3 and 4.3 quarters

(model) compared with 12.3 and 2.6 quarters (data).

The data are not very informative about q00, the probability of remaining in the high-

variance state. The posterior mean estimates are all very close to the prior means of 0.9988

(based on a beta(80,0.1) prior as in (Kim and Nelson 1999a)), while the posterior standard

deviations have increased for all countries. Nevertheless, the last two rows of table 1 show

a dramatic change in the variance estimates for all six countries. For the United States,

our variance estimates are virtually identical to those of (Kim and Nelson 1999a) (see their

table 4). The reduction in the variance for the U.S. is not as dramatic as that found by

(McConnell and Perez-Quiros 2000); the volatility drops by a factor of 3.7 compared to

a more than six-fold decrease in their paper. Relative to the high-state variances σ20, the

variance estimates σ21 are lower by a factor of 6.2 for Australia, 4.1 for Canada, 5.6 for

Germany 2.5 for Japan, and 6.0 for the UK.

The (smoothed) probabilities of being in the low-variance state are shown in figure 4.2.

4Note that this refers to the expected duration of the model states, St. Some type of dating rule must

be used in order to map the St into the business cycle phases of expansions and recessions. A common

choice is that recessions are defined by Pr (St = 1|yT ) ≥ 0.5.
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There is some evidence of clustering in the timing of the variance shifts. Assuming that a

switch takes place when Pr (Dt = 1|yT ) exceeds 50 per cent, the UK, US and Australia all
appear to switch into the low-variance state in the early 1980’s, although the probability of

a shift in the UK remains below 80 per cent until 1992:III. The estimated switching dates

for these countries are 1982:II for the UK, 1984:IV for the US, and 1984:III for Australia.

The shift in Canada occurs in 1992:I. The variance of Japanese GDP growth enters the

low state in 1975:IV, and seems to have switched back to the high state in 1997:III. Japan

and Germany are the only countries to display evidence of a switch out of the low-variance

state, although the other four (notably the US) display a greater degree of uncertainty

(i.e., a larger fall in Pr (Dt = 1|yT )) near the end of the sample.
Our results regarding the variance shift in the US provides an interesting contrast

to the findings of (Blanchard and Simon 2001). First, the estimated probabilities in

figure 4.2 are more suggestive of a fairly sharp break in the volatility of GDP, rather

than a slow decline. We would expect the latter phenomenon to show up as a more

gradual increase in Pr (Dt = 1|yT ) over the sample. Secondly, when Blanchard and Simon
investigate the effects of NBER recessions on their results using a dummy variable to

capture these periods, they note that “[o]utput volatility is indeed lower in recessions (by

construction).” Our results, on the other hand, suggest that recessions (or more probably,

turning points) are associated with higher volatility; the inferences about the variance

state are ‘clouded’ by the recessions of 1991 and 2001. The presence of only one recession

between 1983:I and 2000:IV, compared with five between 1960:II and 1982:IV, may well

explain part of this result.

11



3.2. Growth and volatility

The posterior distributions of the mean growth rates in each of the four possible states

are summarised in table 4.2. Recall that (Kim and Nelson 1999a) impose the restriction

that the gap between the mean growth rates in expansions and contractions is narrower

when the variance is low (i.e., after the structural break) than when it is high. In our

model, this set of restrictions corresponds to µ00 < 0 and µ00 + µ11 > 0.5 Tables 4.1 and

4.2 provide little support for these restrictions. Although the estimates of µ00 are negative

in Canada, Germany, Japan and the U.S., the standard deviations suggest that much of

the posterior distribution lies above zero in each case. According to table 2 the mean

growth rate in expansions for the U.S. may have declined in the low-variance period, but

not significantly so. The Canadian and Japanese data show this phenomenon much more

clearly. The estimated mean growth rate in expansions falls from 1.07 per cent per quarter

to 0.77 per cent for Canada, and from over 2 per cent to 0.95 per cent for Japan. The

case of Germany is somewhat more ambiguous; although the magnitude of the growth rate

decline is the largest in the table, the estimate of µ0 is very imprecise. This may be due

to the effect of reunification.

Except for the low-growth, low-variance state (St = Dt = 1), our growth rate estimates

for the U.S. differ substantially from those of (Kim and Nelson 1999a) (see their table 4).

Part of the difference is undoubtedly due to differences in data and sample periods. In

particular, Kim and Nelson work with demeaned growth rates whereas we do not.

None of the other countries show any evidence that business cycles have become milder

in the sense of a narrowing in the gap between growth rates. On the contrary, mean

5Although we use the same notation as (Kim and Nelson 1999a), our parameterization differs from

theirs.
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growth rates in the high-growth, low-variance state (i.e., when St = 0 and Dt = 1) in

Japan and the UK have increased significantly, while Australia shows virtually no change.

Interestingly, the average rate of output decline in low-growth periods has increased (the

average growth rate has fallen) in all countries. Although this change is not significant, it

suggests that recessions may in fact have become more severe, rather than milder. Note

that the parameter µ11 measures the extent to which the business cycle has become milder,

in the sense that the gap between the mean growth rates in expansions and contractions

has narrowed. To see this, denote the gaps in the high- and low-variance states as g0 and

g1, and write their difference as:

g0 − g1 = [µ0 − (µ0 + µ1)]− [(µ0 + µ00)− (µ0 + µ00 + µ1 + µ11)]

= −µ1 − [− (µ1 + µ11)]

= µ11.

We can therefore base inference about the moderation of business cycles on the posterior

distribution of µ11. Apart from the mean and standard deviation of this distribution given

in table 4.1, we report the upper-tail area in the bottom row of table 4.2. This is the

probability that µ11 ≥ 0, implying a more moderate business cycle. Evidence for this sort
of change is strongest in Germany and Japan, where the probability of a smaller difference

in mean growth rates exceeds 68%. On the other hand, the UK business cycle has likely

become less stable in this sense; roughly 64% of the distribution of µ11 lies to the left

of zero. For the other countries there is little evidence of any change in the difference in

mean growth rates.
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3.3. Bayes factors and nonlinearity

Using the Savage-Dickey Density Ratio to compute Bayes factors, we can assess the support

in the data for the non-linearities implied by our model. Table 4.3 presents the Bayes

factors in favour of the following hypotheses: µ1 = 0, µ00 = 0, µ11 = 0, µ1 = µ00 = µ11 = 0

(labeled ‘linear mean’ in the table), and σ20 = σ21. Values in excess of one suggest support

for the hypothesis in question. (Kass and Raftery 1995) present a rule of thumb for

interpreting Bayes factors. Values less than 3 imply that evidence for the hypothesis

under study is worth only a bare mention; Bayes factors between 3 and 20 constitute

‘positive’ evidence; ‘strong’ evidence corresponds to values between 20 and 150, while

Bayes factors in excess of 150 indicate ‘very strong’ evidence. Using this guideline, there

is little evidence for (or against) Markov-switching non-linearity in the mean growth rates

for most of these countries. The Bayes factors in table 4.3 suggest that, with the exception

of Japan, a linear mean is basically an even-money bet. The evidence against linearity

in the mean for Japan is ‘strong’, with a Bayes factor of 1/0.007 = 145. This result is

primarily due to the sharp drop in the mean in the high growth state; the Bayes factor in

favor of µ00 = 0 is 0.009, or 112 to one against.

The Bayes factors in favor of µ11 = 0 are in line with the results discussed above

regarding the gap between the mean growth rates.

In marked contrast to the results for the mean parameters, there is very strong evidence

against homoscedasticity. Interestingly, it appears that allowing for Markov switching in

the residual variance weakens the evidence for Markov switching in the mean of GDP

growth.
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3.4. The shape of business cycles

Our final set of results concerns the non-parametric statistics of (Harding and Pagan 2002)

that describe the shape of the business cycle. By treating these measures as additional

functions of interest, we can obtain their posterior distributions in a straightforward way.

These distributions, for both recessions and expansions, are presented in figures 4.3 to

4.14. We dated the periods of expansion and recession using the ‘BBQ’ dating algorithm

described in (Harding and Pagan 2002). In each figure, the vertical line indicates the true

value computed from the data (i.e., the average of the given statistic over the observed

peaks and troughs). The distributions from our base model (with both switching mean

and variance) are represented by a solid line and labelled ‘b’ in the figures. The dashed line

(‘m’) corresponds to a model with a switching mean but constant variance, while the dotted

line (‘v’) arises from a model with a linear mean and switching variance. We investigate this

last model based on the (admittedly inclusive) evidence in favour of linearity in the mean

given by the Bayes factors discussed above. Finally, we include a model (shown by the

dash-dot line, labelled ‘i’) with both switching mean and variance, but with µ00 = µ11 = 0.

In this model, the state of the variance has no impact on the state of the mean. This model

also receives some support in table 4.3.

Several interesting points emerge from an examination of these figures. First, the ability

of simulated data from these models to adequately capture the shape of actual business

cycles is generally quite good, with modal values near the average values observed in the

data. There are some notable exceptions however. For example, the Markov switching

models significantly underestimate all aspects of Australian expansions (see figure 4.4).

Second, the distributions of the Harding-Pagan statistics are often very skewed, with
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extremely long tails (the x-axes in some of the figures have been truncated to show the

central mass of the distributions).6 Clearly, the modal estimates of the distributions are

much more favourable to the Markov switching models than are the means and standard

deviations. For example, the posterior distribution of the duration of US expansions, using

the base model, has a mean of 26.8 quarters and a standard deviation of 15.5 quarters. One

would not reject the hypothesis that the model captured the true value of 16.8 quarters

simply because of the large standard deviation. On the other hand, the true value lies at

roughly the 23rd percentile of the posterior distribution, while the mode of 19.4 quarters lies

at the 33rd percentile. The fit of the model is not great, but is better than the ‘t-statistic’

approach would suggest.

Third, in most cases there is little to choose from between the three models, in the

sense that the modes of the various distributions are roughly coincident and/or equally far

from the data values. Where there is a noticeable difference, there is no consistent ranking

between the three models. For Canadian recessions, the model with only a switching mean

is closest to the actual value of the amplitude, duration and cumulative loss. Next is the

model with independently switching mean and variance, while the variance-only model

is furthest. For Australian recessions the model with independently switching mean and

variance does slightly better than the others.

Finally, the posterior distributions of the ‘excess’ statistics are much more symmetric

than those of the other statistics, with modes that are closer to zero than the actual data

values. Recall that an ‘excess’ value of zero implies a linear growth path for GDP, or a

perfect fit for the triangle approximation of (Harding and Pagan 2002). The interesting

6The maximum truncation occurred in the “cumulative gain” panel of figure 4.8, where 17% of the

posterior of the variance-only model lies to the right of 1,000. In most other cases the truncation was less

than 2% of the distribution. Further details are available on request.
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feature of these posteriors is that the four variations of the Markov switching models all

imply virtually the same degree of departure from the triangle approximation, and so are

all about equally informative (or not) about this particular version of nonlinearity in the

data.

4. Conclusions and future directions

We draw three main conclusions from the results in this paper. First, there seems to have

been a general change in the volatility of GDP growth in the countries we study in the

mid-1980’s. For all countries except Japan, this change was toward decreased volatility.

It is not clear, however, that this has been a permanent structural shift.

Second, the evidence is much stronger for non-linearity in the variance of GDP growth

than it is for non-linearity in its mean. Bayes factors overwhelmingly reject homoscedas-

ticity, but suggest that a linear mean growth rate is a slightly better than even-money

bet.

Third, the models we examine are able to generate data that does a reasonable job

of replicating the shape of actual business cycles. The models’ ability to match the non-

parametric statistics of (Harding and Pagan 2002) varies across countries and phases of the

cycle, and becomes most apparent when one examines the entire posterior distribution. In

future work, we plan to investigate the possibility of using non-parametric shape measures

such as the Harding-Pagan statistics to elicit ‘business cycle priors’ for regime-switching

models, including those presented here.
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Table 4.1: Prior and posterior distributions of model parameters

Prior Australia Canada Germany Japan UK US

p00 mean 0.8 0.9667 0.9742 0.9506 0.9677 0.9690 0.9648

s.d. 0.16 0.0269 0.0181 0.0518 0.0197 0.0227 0.0234

p11 mean 0.8 0.7211 0.7762 0.6678 0.8827 0.7695 0.7547

s.d. 0.16 0.1497 0.1314 0.1748 0.1071 0.1353 0.1343

q00 mean 0.9988 0.9926 0.9923 0.9722 0.9911 0.9863 0.9910

s.d. 0.004 0.0072 0.0077 0.0183 0.0084 0.0129 0.0088

q11 mean 0.9 0.9836 0.9712 0.9748 0.9810 0.9733 0.9763

s.d. 0.091 0.0160 0.0284 0.0156 0.0169 0.0224 0.0237

µ0 mean 0 0.9451 1.0652 1.0012 2.002 0.5892 0.9349

s.d. 1 0.1784 0.1466 0.5301 0.2286 0.1700 0.1875

µ1 mean -0.5 -1.2461 -1.3346 -1.3793 -2.1488 -0.9132 -1.1734

s.d. 1 0.3278 0.2807 0.5276 0.2690 0.3249 0.2728

µ00 mean 0 0.0008 -0.2954 -0.3444 -1.0538 0.1378 -0.0880

s.d. 1 0.2018 0.2045 0.5634 0.2679 0.1880 0.2194

µ11 mean 0 -0.0385 -0.2232 0.2865 0.8183 -0.2333 -0.1604

s.d. 1 0.5302 0.8287 0.6774 0.7562 0.6080 0.6527

φ1 mean 0 -0.0146 0.2406 -0.0994 -0.0617 0.0317 0.1526

s.d. 0.5 0.0909 0.1074 0.0932 0.1100 0.0966 0.1256

σ20 mean 0.333 2.8590 0.9782 8.7798 1.6242 1.5738 1.0195

s.d. 0.408 0.4618 0.1567 4.3577 0.3653 0.4439 0.2185

σ21 mean 0.333 0.4620 0.2362 1.5794 0.6608 0.2623 0.2720

s.d. 0.408 0.1051 0.0890 0.6217 0.2020 0.0999 0.0798
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Table 4.2: Mean growth rates by state

St Dt Prior Australia Canada Germany Japan UK US

0 0 µ0 mean 0 0.945 1.065 1.001 2.002 0.589 0.935

s.d. 1 0.178 0.147 0.530 0.229 0.170 0.188

1 0 µ0+µ1 mean -0.5 -0.301 -0.269 -0.378 -0.147 -0.324 -0.239

s.d. 1.41 0.293 0.252 0.368 0.152 0.303 0.249

0 1 µ0+µ00 mean 0 0.946 0.770 0.657 0.948 0.727 0.847

s.d. 1.41 0.098 0.136 0.137 0.134 0.077 0.098

1 1
P

µ mean -0.5 -0.339 -0.788 -0.436 -0.382 -0.420 -0.487

s.d. 2 0.501 0.816 0.556 0.696 0.561 0.639

pr(µ11≥ 0) 0.509 0.481 0.689 0.890 0.376 0.493

Table 4.3: Bayes factors

Hypothesis

µ1 = 0 µ00 = 0 µ11 = 0 linear mean σ20 = σ21

Australia 1.3603 5.0603 1.2338 1.9102 3.26E-14

Canada 0.4659 1.3548 1.2831 0.975 6.87E-05

Germany 1.4548 1.2239 1.2042 1.9635 1.23E-25

Japan 0.2475 0.0089 0.6857 0.0069 2.05E-24

UK 1.1469 4.371 1.4846 1.4551 6.98E-17

US 0.6228 3.9828 1.7245 1.8696 6.54E-06
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Figure 4.3: Harding-Pagan statistics for Australian recessions.

Models : b — switching mean and variance; m — switching mean only; v — switching

variance only; i — model b with mean and variance independent.
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Figure 4.4: Harding-Pagan statistics for Australian expansions.

Models : b — switching mean and variance; m — switching mean only; v — switching

variance only; i — model b with mean and variance independent.
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Figure 4.5: Harding-Pagan statistics for Canadian recessions.

Models : b — switching mean and variance; m — switching mean only; v — switching

variance only; i — model b with mean and variance independent.

27



50 100 150 200
0

0.005

0.01

0.015

0.02

0.025

Amplitude

b
m
v
i
data

20 40 60 80 100 120
0

0.01

0.02

0.03

Duration

2000 4000 6000 8000 10000
0

2

4

6

8

x 10-4 Cumulative gain

-5 0 5 10
0

0.1

0.2

0.3

0.4

Excess

Figure 4.6: Harding-Pagan statistics for Canadian expansions.

Models : b — switching mean and variance; m — switching mean only; v — switching

variance only; i — model b with mean and variance independent.
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Figure 4.7: Harding-Pagan statistics for German recessions.

Models : b — switching mean and variance; m — switching mean only; v — switching

variance only; i — model b with mean and variance independent.
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Figure 4.8: Harding-Pagan statistics for German expansions.

Models : b — switching mean and variance; m — switching mean only; v — switching

variance only; i — model b with mean and variance independent.
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Figure 4.9: Harding-Pagan statistics for Japanese recessions.

Models : b — switching mean and variance; m — switching mean only; v — switching

variance only; i — model b with mean and variance independent.
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Figure 4.10: Harding-Pagan statistics for Japanese expansions.

Models : b — switching mean and variance; m — switching mean only; v — switching

variance only; i — model b with mean and variance independent.
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Figure 4.11: Harding-Pagan statistics for United Kingdom recessions.

Models : b — switching mean and variance; m — switching mean only; v — switching

variance only; i — model b with mean and variance independent.
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Figure 4.12: Harding-Pagan statistics for United Kingdom expansions.

Models : b — switching mean and variance; m — switching mean only; v — switching

variance only; i — model b with mean and variance independent.
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Figure 4.13: Harding-Pagan statistics for United States recessions.

Models : b — switching mean and variance; m — switching mean only; v — switching

variance only; i — model b with mean and variance independent.
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Figure 4.14: Harding-Pagan statistics for United States expansions.

Models : b — switching mean and variance; m — switching mean only; v — switching

variance only; i — model b with mean and variance independent.
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