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Abstract 

This paper provides an overview of how labour market analysis can be conducted in the 

context of VAR-based models. The examples presented here show that these methods 

are quite flexible, and capable of addressing a wide variety of theoretical and policy-

related issues. Specifically, the various techniques are illustrated in models which: 

examine the dynamics of gross job flows; assess the relationship between real wages 

and unemployment; quantify the contribution of sectoral shocks to the number of people 

unemployed by duration of unemployment; examine the relative contributions of 

discouraged worker effects, insider effects, etc. on the persistence of unemployment; 

and analyse the effects of labour market shocks in the OECD countries. 
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Introduction 

This paper describes the use of vector autoregression (VAR) models in the analysis of 

labour market issues. VAR models have been used extensively in the twenty years since 

the pioneering work of Sims (1980), and have become standard tools in empirical 

macroeconomics. 

The plan of this paper is as follows. The next section lays out the general form of a 

VAR model and discusses the basic analytical techniques, such as impulse responses 

and forecast error variance decomposition (FEVD). In its most basic (i.e., unrestricted) 

form, a VAR is essentially a multivariate regression model. Used in this way, a VAR 

provides a convenient way to summarise the second-moment properties (i.e., means and 

covariances) of a group of data series. In general, the parameter estimates, impulse 

responses, FEVDs and other quantities obtained from unrestricted VARs have little or 

no economic meaning. Section 2 introduces structural VAR models, which were 

developed in order to introduce some degree of economic content. This is done by 

identifying the model through the imposition of restrictions derived from economic 

theory. Vector error correction models (VECMs), discussed in section 3, are in one 

sense a subset of structural VARs, in that the restrictions imposed relate to long-run 

‘equilibria’ based on the presence of cointegration among the model’s variables. In this 

class of models, the short-run dynamic properties can be analysed separately from long-

run trend behaviour. 

Specific applications relevant to the modelling of Australian unemployment are 

included in each section. The review contained herein is meant to be illustrative rather 

than exhaustive. In particular, the literature relating to each of the first three subsections 

is extensive, to say the least. I also do not provide any more technical detail than 

absolutely necessary. In addition to Sims (1980), interested readers may wish to consult 

Hamilton (1994), Enders (1994), or similar texts. 

1. Vector Autoregressions 

Suppose the n-variable vector time series yt evolves according to the following model: 

 ( ) ttt uyLBy += −1 , (1) 
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where ( ) ,22111 ptpttt yByByByLB −−−− +++= L  and ut is a Normally distributed random 

error vector with zero mean and covariance matrix Σ. Equation (1) is referred to as a pth-

order VAR, or VAR(p), since it includes p lags of each of its variables. In general, 

deterministic terms such as constants, time trends, or seasonal dummy variables could 

also be included in (1); they are suppressed for expositional purposes. 

If we assume that the VAR is stationary (i.e., that the roots of the equation 

( ) 01 =− BI are all less than one in absolute value), then we can write the moving 

average representation of (1) as 

 ( ) tt uLDy = , (2) 

with ( ) ( )( ) 1−−= LBILD . In (2), yt is written as a linear combination of the errors, ut. 

The moving average representation forms the basis for computing impulse responses 

and forecast error variance decompositions. 

Reduced-form VARs are a convenient way to summarise the second-moment properties 

(i.e., means, variances and covariances) of a group of data series. One of their most 

common uses in this regard is testing for so-called causal orderings or Granger 

causality. This notion of ‘causality’ is perhaps more accurately described as ‘one-step-

ahead predictability.’ Suppose that equation (1) has just 2 variables, and that the past 

values of the first variable do not affect the current value of the second. In that case, we 

can write (1) as 
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 (3) 

In this case, we say that y2 (Granger) causes y1, but y1 does not cause y2; equivalently, y2 

is causally prior to y1. Tests for the presence of causality are basically likelihood ratio 

tests of the joint hypothesis that the coefficients in B21(L) are all equal to zero. Notice 

that if y1 and y2 in (3) are multivariate, then the first block of equations can be 

interpreted as a VAR with exogenous variables. Thus the basic formulation (1) is quite 

general. 
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Shan, Morris and Sun (1999) use Granger causality tests to conclude that immigration 

does not cause unemployment in either Australia or New Zealand. Rather, these authors 

find that the main causal influences (i.e., predictive factors) of unemployment are 

changes in industrial structure and other macroeconomic factors. 

Impulse response functions (IRFs) and forecast error variance decompositions (FEVDs) 

are also standard tools for summarising second-moment properties. Both are based on 

the moving average representation (2), and show how the predicted values of the 

model’s variables at various horizons are influenced by the error terms. They allow one 

to answer questions such as “if the first variable in the VAR is unexpectedly high in 

period t, how will this affect the other variables between periods t and t+k?” Or, “how 

important have prediction errors in variable 3 been in explaining the variance in the 

forecast errors of variable 2?” At this point, these questions may not seem particularly 

interesting. If we could interpret the errors ut in terms of economic theory, however, 

then such questions become central to both academic research and policy debates. Also, 

it is common to use reduced-form VAR estimates as a baseline or point of departure, in 

studies that have the primary goal of estimating structural relationships. 

To see how these techniques work, consider the moving average representation (2). 

Write the covariance matrix of the error terms as PP ′=Σ , where P is the lower 

triangular Choleski factor of Σ. The diagonal elements of the matrix P are the standard 

deviations of the original residuals. The Choleski factor can be thought of as a type of 

matrix square root. Now instead of working with the original reduced form errors, ut, 

define the orthogonalised errors tt uPv 1−= . Because of the structure of P, the 

orthogonalised errors are uncorrelated with each other.1 It is important to stress that this 

orthogonalisation is not unique; in particular, a different ordering of the variables in yt 

will produce different impulse responses and variance decompositions. Write the 

estimated coefficients of D(L) as ( ) m
m

s
s LDLDLDDLD ˆˆˆˆˆ

10 LL ++++= . Then the 

                                                 
1 In principle, impulse response functions and variance decompositions could be calculated without 

orthogonalising the covariance matrix Σ. However, because the original errors, ut, are correlated, the 

interpretation of these non-orthogonalised quantities is problematic. In practice, even ‘non-structural’ 

VAR analyses report orthogonalised impulse responses. 



 6 

response of yt+s to an innovation (shock) of one standard deviation in variable j at time t 

is given by js pD̂ , where pj is the jth column of P. That is, the ith row of js pD̂  shows 

how the ith variable in y reacts to an unexpected change in the jth variable. The 

(orthogonalised) impulse response function (IRF) is a plot of these responses as a 

function of s. The variance in the s-step ahead forecast error in yt which is due to 

variable j is given by  

 .ˆˆˆˆˆˆ
112211 −− ′++′+′+′ sjjsjjjjjj DppDDppDDppDpp L  

The FEVD is then just this variance component divided by the total forecast error 

variance of yt. Further details on the estimation of IRFs and FEVDs can be found in the 

books by Hamilton or Enders, cited above. 

For example, Elias (1998), using an FEVD analysis, finds that sectoral shocks are 

important determinants of unemployment rate fluctuations in the United States. The idea 

of converting reduced form errors (regression residuals) into structural innovations 

(labour demand shocks, real wage shocks, etc.) is the goal of structural VAR analysis, 

discussed below. 

1.1. A VAR-Based Labour Market Analysis 

Loungani and Trehan (1997) use a stock market price dispersion index to measure 

sectoral shocks. It has been suggested that stock market dispersions provide an early 

signal of shocks that affect sectors differently . Further, dispersion indices put more 

weight on shocks that investors expect to be permanent, such as structural changes, 

rather than temporary, such as cyclical shocks. The formula for calculating this index is 

given as 

( )
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where Rit is the growth rate of industry i’s stock price index, Rt is the growth rate of the 

aggregate stock market index (the S&P 500 composite index in Loungani and Trehan’s 

analysis), and Wi is the industry’s share in total employment. 
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In addition to the dispersion index, four other variables are included to form a basic five 

equation VAR model: the unemployment rate; the growth rate of real output; the 

Federal Funds rate; and the growth rate of the S&P 500 index. The last two variables are 

included to control for monetary policy effects and business cycle effects, respectively. 

The main estimation and variance decomposition results for the basic VAR model are 

summarised as follows. 

• The dispersion index is important in explaining unemployment even after 

controlling for non-sectoral effects. It is not, however, important in predicting real 

output. 

• A dispersion index shock increases the unemployment rate continuously, for a 

period of about four to five quarters after the shock to about two years, before a 

gradual decline. A shock to the federal funds rate yields a similar response. 

• Real output also responds negatively (with a lag) to a dispersion index shock but the 

response is relatively short-lived. The same can be said with regard to a shock to the 

federal funds rate. 

• The dispersion index accounts for 31% of the variance in unemployment three years 

after the shock. The federal funds rate accounts for about 40%. 

• Both the dispersion index and federal funds rate account for around 15% to 18% of 

the variance in real output two years after the shock. 

It is possible that sectoral shocks, representing long-term labour reallocations, may be 

more important in explaining long-term unemployment than short-term unemployment. 

To examine this issue, Loungani and Trehan repeated their analysis using the long-

duration unemployment rate instead of the aggregate unemployment rate in their basic 

VAR model. The main estimation and variance decomposition results are summarised 

as follows: 

• Lagged values of the dispersion index play a very significant role in the 

determination of long-duration unemployment. 

• Lags of long-duration unemployment do not influence the level of dispersion. 

• The dispersion index accounts for a very high proportion of unemployment variation 

at the longer horizons; for example, about 45% at the 20-quarter horizon. 
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The authors also consider four other groups of duration of unemployment: (1) up to 5 

weeks; (2) 5 to 14 weeks; (3) 14 to 26 weeks; and (4) more than 26 weeks. The main 

results from the forecast error variance decomposition are: 

• Beyond the first two years, the contribution of sectoral shifts to unemployment 

fluctuations rises fairly steadily with duration; for example, the fraction of 

unemployment variance accounted for by shocks to the dispersion index ranges from 

9% for the shortest duration to 43% for the longest duration, at the 20-quarter 

horizon. 

• The contribution of innovations to the Federal Funds rate declines as the duration 

increases; for example, the rate accounts from 60% for the shortest duration to 28% 

for the longest duration at the 20-quarter horizon. 

• The forecast error variance shares of the other variables in the VAR model do not 

change dramatically as the duration of unemployment changes. 

2. Structural VARs (SVARs) 

Suppose now that we postulate the following structural VAR (SVAR) for yt: 

 ( ) ( ) ttt yLAyA ε+= −10 . (4) 

In equation (4), the vector εt denotes the structural shocks impinging on the economy. 

These could include aggregate supply shocks, labour demand shocks, monetary policy 

shocks, terms of trade shocks, etc. These shocks are assumed to be uncorrelated both 

with each other and over time, so that their covariance matrix is diagonal. If A(0) is 

invertible (which I assume throughout), then the structural and reduced form VAR 

representations are related in the following way: 

( ) ( ) ( ) ( ) ( )( ) ( )( )′Ω=Σ=′= −−− 111 00;0 AAuuELAALB tt , where Ω is the covariance matrix 

of the structural shocks (in much applied work, Ω is taken to be the identity matrix). 

Therefore, given a particular identification scheme (i.e., an estimate of A(0)), the 

parameters of the structural model (including estimates of the historical values of the 

various shocks) can be recovered from the reduced form estimates. We can also write 

the structural moving average representation analogous to (2): 

 ( ) ( )( ) ( ) ttt LCLAAy εε ≡−= −10 . (5) 
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Tools such as IRFs and FEVDs can then be used on the structural model to address 

issues such as the relative importance of labour supply shocks and monetary policy 

shocks in explaining fluctuations in unemployment. 

The matrix A(0) contains the contemporaneous identifying restrictions. These 

restrictions can take various forms. A particularly simple identification scheme, 

discussed earlier in the context of IRFs, assumes that A(0) is a triangular matrix. This 

implies that shocks to the first variable in the vector yt can influence the current-period 

values of all the other variables, shocks to the second can influence all but the first, and 

so on. In this case, the matrix A(0) can be estimated by the lower-triangular Choleski 

decomposition of the reduced form error covariance matrix, Σ. To take a simple 

example, suppose that yt consists of GDP and a measure of labour supply, say aggregate 

hours worked ht. Ordering yt as (ht, GDPt)′ would imply that innovations to hours have 

an immediate influence on current-period output, but that shocks to GDP can affect 

hours worked only with a lag. This scheme might be attractive if one thought that 

aggregate employment was a lagging indicator of the business cycle. Notice that this 

type of ordering can also be deduced on the basis of the Granger causality tests 

discussed previously. In the present example, the ordering implies that hours are 

causally prior to GDP. Although computationally convenient, it may be difficult to 

justify a purely recursive (i.e., triangular) identification scheme, particularly in large 

systems. 

Restrictions on A(0) could also be derived from a particular theoretical model. 

Alternatively, they could reflect widely held beliefs about the functioning of the 

economy, beliefs which are consistent with a wide range of theoretical models. For 

example, monetary policy shocks could be identified in part by the restriction that 

contemporaneous values of output and prices do not enter the policy reaction function. 

The argument is informational; current-period data on these variables are typically not 

available to the monetary authority. 

There are other means of identifying the structural shocks. In one of the earliest and 

most widely cited SVAR papers, Blanchard and Quah (1989) impose the restriction that 

aggregate demand shocks have no long-run effect on output. This sort of identification 

involves restricting the long-run impact matrix ( ) L++= 101 CCC . Turner (1993) 
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estimates a SVAR model of the UK business cycle using this sort of identification. 

Davis and Haltiwanger (1999) also employ such a neutrality restriction, as illustrated 

below. 

2.1. Labour market studies using SVARs 

This subsection reviews several SVAR-based labour market studies. See the individual 

papers for more detail. 

Job flows, reallocation and aggregate fluctuations 

One of the best-known applications of SVAR methods to labour market analysis is in 

the work of Davis and Haltiwanger (1990, 1999). These studies model gross job 

creation and destruction as being driven by a combination of aggregate and allocative 

(sector-specific) disturbances. The authors use both contemporaneous and long run 

restrictions to identify these structural shocks from the reduced-form errors. The SVAR 

setup used in both of these papers can be described as follows.2 Let gross job creation 

and destruction at time t be denoted POSt and NEGt, respectively. Also, denote the 

aggregate and allocative shocks to these flows as a and s, respectively. The structural 

model is given (in moving average form) by 
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with ( ) 00 CC = . The structural shocks are assumed to be uncorrelated so that they have 

a diagonal covariance matrix Ω.3 In order to recover C0, Davis and Haltiwanger assume 

that the reduced form residuals pt and nt are related to the structural shocks at and st in  

the following way: 

                                                 
2 The discussion below relies primarily on Davis and Haltiwanger (1990), but both papers use the same 

basic technique. 

3 Davis and Haltiwanger (1990) actually estimate a more general model, which allows for serial 

correlation in the structural shocks. Specifically, they define ( ) ,, ′= tttz σα  where σt is the intensity of 

the allocative shock. They then write ( ) tt LMz ε= , where ε is the vector of (iid) disturbances 

underlying zt. Their model is thus ( ) ( ) ( ) .~
ttt LMLCLCy εε ==  
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Further assuming that the structural shocks are uncorrelated, the unknown elements of 

C0 can be recovered from the reduced form covariance matrix Σ. Since ( ) ( )′Ω=Σ 00 CC , 

we have 
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This implies the following set of equations: 
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Since there are only three equations but four unknowns, this system is not yet identified. 

Davis and Haltiwanger note that these equations can be combined to give a one-to-one 

relationship between c0p and c0n.4 They then provide qualitative restrictions on c0n (e.g., 

that it is greater than one), and obtain the corresponding value for c0p. The variances of 

the structural shocks then follow from the first two equations in (8). 

The qualitative restrictions on c0n and c0p are derived from theoretical considerations 

outlined in Davis and Haltiwanger (1990). For example, an aggregate shock should 

increase job creation while decreasing job destruction. Furthermore, the 

contemporaneous reduction in job destruction should be greater than the increase in job 

creation (i.e., aggregate shocks increase net employment growth), implying that c0n 

should be positive and greater than one.  

                                                 
4 Specifically, ( )( ) .

1
0

22
00

−
++= pnncnpncpnpc σσσσ  
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Davis and Haltiwanger also employ alternative long-run restrictions. In their 1999 

paper, for example, a scheme similar to the one described above is combined with an 

assumption that allocative shocks have no permanent effect on the level of employment. 

Restrictions such as this constrain the reduced form impulse responses. This particular 

neutrality assumption implies that over a long enough horizon, the effects of an 

allocative shock on job creation exactly cancel the effects on job destruction. In the 

notation above, this means that 
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The main result in both the Davis and Haltiwanger papers is that allocative shocks 

account for a large fraction of the variance of job flows, and in particular the intensity of 

job reallocation (the sum of job creation and destruction). This result is robust to a 

number of alternative assumptions used to identify the structural shocks. In addition, 

results in the authors’ 1990 paper suggest that allocative disturbances have played an 

important role in explaining the variance of the unemployment rate. 

An analysis of macro shocks and policies in Italy 

In a study of the Italian labour market, Christofides (1996) estimates a SVAR model in 

three variables: employment, the consumption wage, and the labour force. The author’s 

main objectives are: to quantify the effect of various policies, such as hiring and firing 

restrictions, wage indexation, and centralisation and domination of the wage bargaining 

process by national unions and employer associations; to perform historical experiments 

using an extended version of the basic SVAR model; and to examine the effect of post-

1991 labour market liberalisation measures and perform model simulations under 

certain assumptions. This paper is particularly relevant, as many of the characteristics of 

the Italian labour market during the sample period have also been present in Australia. 

The basic SVAR model consists of an employment equation, a wage-setting equation, 

and a labour supply equation as shown below. 
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In (9), n, wc and l represent employment, the consumption wage, and the labour force, 

respectively. wp is the product wage, k is business sector capital stock, r is the real 

exchange rate, y is real GDP, p is productivity, WAP is the working age population (14-

64), and SSC is the ratio of social security contributions to the wage bill. 

Unemployment, u, is given by the identity ttt nlu −= . 

In this model, policy can have three distinct roles. It can affect employment (and 

unemployment) directly (e.g. through SSC). Alternatively, it can affect unemployment 

indirectly by influencing the exogenous variables in the extended model (e.g. y, k and r). 

Finally, it can affect the lags with which both policy and non-policy variables affect 

unemployment. The article identifies five such effects: an employment adjustment 

effect; a wage staggering effect; an insider membership effect; a labour force adjustment 

effect; and a discouraged worker effect. 

Christofides conducts simulations to investigate the degree of inertia and sources of 

lags. The basic SVAR model is augmented by the u and wp identities plus an estimated 

production function. The model is then subjected to a 1% transitory negative labour 

demand shock. This results in unemployment settling down to equilibrium after a 

considerable lag (7-8 years). Employment adjustment costs and the wage staggering 

effect tended to increase unemployment persistence, while the insider effect tended to 

reduce it. Unemployment also responded sluggishly to permanent shocks, due to lags 

from all effects except the discouraged worker effect. 

The effects of labour market shocks in the OECD 

In a second example, Balmaseda et al (2000) use a set of long-run restrictions to identify 

structural labour market shocks and analyse the contribution of these shocks to labour 

market fluctuations in the OECD countries. 



 14

The basic theoretical model consists of the following equations: 
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These equations represent, respectively, aggregate demand, a production function, a 

price setting (markup) equation, a labour supply function, and a wage-setting equation. 

The last equation states that nominal wages are set one period in advance so as to equate 

expected employment with a weighted sum of lagged employment and labour supply. 

The variables are: y, the log of real output; p, the log of the price level; n, employment; 

w, nominal wages; d, a shift factor in nominal expenditure; q, a shift factor in 

productivity; l, the log of the labour force; ne, the expected value of (log) employment; 

u, the unemployment rate; τ, a shift factor in labour supply, and φ, a, α, b, and λ are 

parameters. φ, a and α are expected to be positive. If the discouraged worker effect is 

relatively dominant, then b > 0. Partial hysteresis occurs when 0<λ<1, and full 

hysteresis when λ=0. 

To close the model, an identity and three more equations are added. The identity is a 

direct application of the definition of the unemployment rate, u = l-n, and the other 

three equations specify random walk processes for the shift parameters d, θ, and τ. The 

innovations in these processes are denoted by εst, εdt, and εlt. 

If hysteresis is only partial, the model can be solved to give the following SVAR 

representation: 
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where ( ) ( )λρ −++= − bb 11 1 . On the other hand, if we have full hysteresis, the model is 
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The main results from impulse response analysis are: 

• In general, real wages increase both in the short and long run in response to a 

positive productivity shock and decrease in the short run in response to a positive 

labour supply shock. 

• The response of real wages tends to be counter-cyclical in the short run with respect 

to a positive aggregate demand shock, save in the US where it is pro-cyclical. 

• Real output tends to react positively to both productivity and labour supply shocks 

at all frequencies, and to demand shocks in the short run. 

• Unemployment tends to increase temporarily to a productivity shock. It also 

increases in response to a labour supply shock but decreases after a positive 

aggregate demand shock. 

FEVD analysis yields the following main results: 

• For real wages, productivity shocks account for over 50% in the short run and near 

100% in the long run. 

• For real output, productivity shocks dominate in the long run in most countries and 

play an important role in the short run for the UK and US. 

• For the unemployment rate, in the short run, demand shocks dominate in nine 

countries, productivity shocks in five countries, and labour supply shocks in 

Australia and Ireland. 

3. Vector Error Correction Models (VECMs) 

Vector error correction models, or VECMs, allow the researcher to model systems in 

which one or more variables contain stochastic trends. In particular, VECMs provide a 

convenient means of dealing with cointegrated systems, in which the number of 

stochastic trends is less than the number of variables. Generally, the cointegrating 

relationships present in such a system are specified in economically meaningful ways 

(i.e., equilibrium relationships); for the purposes of this paper, therefore, I will treat 

VECMs as structural models. 
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The basic form of a VECM can be derived from the following transformation of (1): 

 ( ) .11 tttt yLGyy ε+∆+Π=∆ −−  (11) 

In (11), ∆ is the first difference operator,5 G(L) is a (p-1)th order matrix lag polynomial, 

and the matrix ( )pBBBI −−−−−=Π L21 . In a stationary VAR, the Π matrix will 

have full rank, while if all the components of yt contain unit roots, Π is zero and (11) 

reduces to a VAR in the first differences of the series. In the case of cointegration, the 

rank of Π will be equal to n-k, the number of variables less the number of cointegrating 

relationships. In this case, Π = αβ′ provides a decomposition of the error-correction 

matrix into the cointegrating vectors β and factor loadings α. This decomposition is not 

unique, but α and β can be estimated by maximum likelihood, using the methods of 

Johansen and Juselius (1990), for example. 

3.1. A VECM model of real wages and unemployment 

Jacobsen et al (1998) analyse the relationship between unemployment and real wages by 

considering the relative importance of supply and demand factors behind the 

development of unemployment, the speed at which real wages and employment respond 

to different types of shocks, and the strength of the long-run relationship between real 

wages and unemployment. 

Identifying assumptions are made so as to present a labour market model that can be 

written as an economically interpretable common trend model. Output is determined by 

employment and a stochastic (exogenous) technology variable (all variables are 

expressed in logarithms). Labour demand is a function of output (y) and the real wage 

(w), while labour supply is a function of the real wage and a stochastic population 

variable. Finally, the real wage is a function of unemployment (l – e, where l is the 

labour force and e is employment) and labour productivity. There are thus four 

structural shocks: to technology, aggregate demand, labour supply, and a wage-setting 

shock. The first and third of these are assumed to be permanent, while the other two are 

transitory. Therefore the model contains two common trends and two cointegrating 

relationships. 

                                                 
5 That is, ∆yt = yt – yt-1. 
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The two cointegrating relationships are specified as follows. First, labour demand is 

assumed to be such that the wage share is stationary: 

.dtttt wye ε+−=  

The second vector is obtained from the real wage equation, 

 ( )[ ] ( ),ttwtttt eyelw −−−−−= δεγ  

where γ and δ are the elasticity of the real wage with respect to unemployment and 

labour productivity, respectively. 

The paper’s main results are summarised as follows: 

• Much of the medium-run (and all of the long run) fluctuations in real wages can be 

attributed to permanent shocks to the stochastic labour supply and technology 

trends. 

• Short-run fluctuations are due primarily to transitory shocks. 

• The hypothesis that unemployment is stationary is difficult to reject given two 

cointegration vectors. 

• Unemployment appears to be significantly affected only by transitory aggregate 

demand shocks, thus implying that real wages and unemployment are unrelated in 

the long run. 

4. Conclusions 

This paper has provided an overview of how labour market analysis can be conducted in 

the context of VAR-based models. The examples presented here show that these 

methods are quite flexible, and capable of addressing a wide variety of theoretical and 

policy-related issues. Future work in this area will concentrate on applying these models 

and techniques to Australian data. 
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