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Socioeconomic status and access to care in a universal health
care system: The case of acute myocardial infarction in Australia

Abstract

This paper examines the role of socioeconomic status (SES) in affecting access to care
and the survival of acute myocardial infarction (AMI) patients in Australia’s universal
health care system. We jointly model the probabilities of patients being admitted to
a catheterisation-capable hospital, receiving invasive coronary angiography (ICA), and
surviving 30 days post discharge as a recursive system of probit equations. We further
investigate the role of capacity and whether the access gap between SES groups widens
when capacity becomes limited.

Our study shows that SES plays a significant role in affecting the survival of AMI
patients, both directly and indirectly through healthcare access. We find that socioe-
conomically disadvantaged patients are less likely to gain access to crucial services like
catheterisation hospitals and ICA, which indirectly affects their survival probability in
addition to the adverse direct impact of SES. While healthcare capacity showed no over-
all effect on access, its interplay with SES exacerbates the access disparity in situations
of limited capacity. Our findings suggest that, to reduce inequality in health outcomes,
public health strategy needs to focus not only on enhancing access but also addressing
the direct consequences of SES.

JEL classification: 114; 118

Keywords: Socioeconomic status; Acute myocardial infarction; Coronary angiography;
Health care access; Capacity.



1 Introduction

Cardiovascular disease is one of several noncommunicable diseases that account for a
significant proportion of premature deaths across all countries and socioeconomic groups
(Sacco et al., 2016; Stringhini et al., 2017). Although overall cardiovascular care is
improving in most countries, evidence suggests that the advance favours individuals in
the affluent group, which can widen the gap in health inequality over time (Bajekal
et al., 2013; Schultz et al., 2018). Practitioners have highlighted the importance of
public health strategies to reduce the disparities in prevention, disease risks, access
to medication and specialised care, and to address the complex relationship between
socioeconomic disadvantages and poor cardiovascular disease outcomes. Socioeconomic
status (SES) can affect access to care, which in turn impinges on outcomes. It also
has a direct bearing on poor outcomes because of lack of education and low awareness
(Cutler and Lleras-Muney, 2010). An understanding of the relative importance of direct
and indirect effects of SES is paramount to the formulation of an effective and targeted

public health response.

We examine the role of SES in the context of Australia’s universal health care system un-
der which equity in access to care has been a stated policy priority. We ask whether SES
affects acute myocardial infarction (AMI, or heart attack) patients’ access to invasive
coronary angiography (ICA) and subsequent survival. We measure SES in three ways:
(i) remoteness of residence; (ii) Socio-Economic Indexes for Areas (SEIFA), a small-area
based measure of neighborhood socioeconomic status published by the Australian Bu-
reau of Statistics (ABS), see ABS (2013); (iii) private patient status, an indicator of

whether the individual patient was admitted as a private or public patient.

We use three distinct measures of SES to capture the multifaceted nature of SES, which
relates to a complex array of factors reflecting the social and economic standings of
individuals. By using these three measures, we aim to present a comprehensive and

nuanced picture of how different components of SES may relate to access to care and



the survival of AMI patients in Australia.

These three measures are related and complementary to one another!. Remoteness cap-
tures the geographic dimension of SES, which is particularly relevant Australia’s vast
geography and significant access disparities between rural and urban regions. Never-
theless, it does not directly measure individual or household socio-economic standings.
SEIFA, on the other hand, is a well-established, comprehensive, and nationally recog-
nized measure of area-level SES that considers a broad range of indicators (income,
education, employment, etc.). However, being an area-level measure, SEIFA may not
perfectly represent the SES of individual residents. By contrast, private patient sta-
tus provides insight into individuals ability and choice to access private healthcare. It is
known to be highly correlated with income and wealth in the context of Australia’s mixed
public-private insurance system because the taxation provision and premium subsidy in
relation to private health insurance have provided strong financial incentives for high-

income earners to purchase private health insurance (Palangkaraya and Yong, 2005).

AMI is a life-threatening emergency condition for which immediate care is required.
Current best-practice guidelines suggest that the diagnosis and management of AMI
should begin immediately at the point of first medical contact (Ibanez et al., 2018). ICA
is a key diagnostic procedure to assess the extent of artery blockage in order to prescribe
appropriate management strategies for AMI. The procedure involves the insertion of a
tube (catheter) into a large arterial blood vessel and the use of a special dye and x-rays
to examine blood flows through the coronary arteries. It is widely accepted that, for
patients with more urgent types of AMI, ICA should be undertaken within 90 minutes
and typically no more than 24 hours upon admission (Brodie et al., 2010; Sanz-Sanchez

and G.G. Stefanini, 2022). For all AMI patients, timely ICA is critical for patient

LA correlation analysis using Goodman and Kruskal’s v between pairs of measures indicates that
SEIFA is moderately correlated with remoteness of residence (y = 0.45) and private patient status
(v = 0.29), while remoteness of residence and private patient status are weakly correlated (v = 0.01).
The analysis demonstrates that, while these measures are related, they are not perfectly collinear and
thus likely capture different dimensions of SES. The moderate to weak correlations supports our decision
to include all three in our analysis, as they each provide unique information about SES.



wellbeing and has a significant effect on survival (Wright et al., 2011).

ICA takes place in a catheterisation laboratory, a purpose-built facility in which a range
of diagnostic and interventional cardiac procedures are performed, including ICA, per-

cutaneous coronary intervention or stenting, pacemaker implants and replacements, etc.

We estimate a recursive system of three probit equations that model the probability
of an AMI patient: (i) getting admitted to a hospital capable of performing ICA, (ii)
receiving ICA, and (iii) surviving post discharge for at least 30 days. By estimating
a recursive system, we are able to decompose the total effects into direct and indirect
effects of SES on mortality outcomes. The indirect effects are via access to hospitals
with proper facilities and receiving the appropriate treatment after admission. These

are in contrast to the direct effects which affect survival due to differences in SES.

We further investigate the role of short term capacity of hospitals to deliver ICA. For
patients admitted to a particular hospital, due to the urgent nature of AMI, the short-
term capacity of the hospital to deliver ICA on admission is an important consideration.
We investigate the interactions of SES with the short-term capacity of the admitting
hospital on the day of admission. The interaction effects enable us to examine whether
access to ICA differs between SES groups when capacity is low and rationing may become

necessary.

We find that SES has large direct effects on access and survival of AMI patients and in
some instances the inequity in access adversely affects the survival of the disadvantaged.
We further find that the interactions of SES and capacity indicate that inequity in access

worsens when capacity is limited and rationing may be necessary.

We contribute to the literature by proposing a recursive system of probit equations to
disentangle the direct and indirect effects of SES; in addition we examine the interaction
effects of SES with short-term capacity, an issue that has yet to receive attention in the

literature. Our focus on direct and indirect effects of SES is similar in spirit to Hagen et



al. (2015), although our approach is different. Specifically, Hagen et al. (2015) estimate
systems of independent linear equations and apply path analysis to identify the direct

and indirect effects, whereas we rely on the recursive structure of our model.

Related Literature

It is well known that lower SES is associated with poorer health and higher disease risks
(Braveman, et al., 2011; Matetic et al., 2020; Lago-Penas et al., 2021). In a review of 47
studies on OECD countries, Lago-Penas et al. (2021) conclude that low SES increases
the risk of developing cardiovascular and other non-communicable diseases. Whether the
poorer health is translated into greater health care use is uncertain, and much depends
on the nature of care and the social support and health systems under which health care
is accessed (Yong and Yang, 2021). In terms of mortality outcomes, Stringhini et al.
(2017) report that, in a multicohort study of 1.7 million individuals followed up for an
average of 13 years, lower SES individuals generally have higher mortality risks and this
finding holds across countries and health systems. However, it is unclear whether the
difference in mortality is due to lower SES individuals having poorer health or poorer
access to care. On the latter, some recent evidence suggests that the increasing use of
financial incentives in health care provision of care may have exacerbated the disparity

in access between SES groups (Beckert and Kelly, 2021; Milcent and Zbiri, 2022).

Specific to coronary heart disease, there is a large literature on the role of SES and how
it affects disease risk, access and outcomes. It is generally agreed that socioeconomically
disadvantaged individuals tend to have higher coronary heart disease risks (Paige et al.,
2018) and lower access to care, including access to ICA and revascularisation (Pilote
et al., 2003; Hetemaa et al., 2006; Sulo et al., 2016; Schroder et al., 2016; De Luca et
al. 2016; Matetic et al., 2020). Several studies also report differential access to newer

treatment options in favour of high SES patients (Korda et al., 2011; Yong et al., 2014).

A natural question that arises is whether the lower access by SES disadvantaged patients



results in worse mortality outcomes. Several studies show that the differential access to
care across SES groups has negligible or no effects on survival (Gnavi et al. 2014; Hagen
et al., 2015; Biswas et al., 2019; Christensen et al., 2020). However, other studies have
found a significant relationship between lower SES and higher mortality risks (Cafagna
and Seghieri, 2017; Bergstrom et al., 2015; Stringhini et al., 2017; Matetic et al., 2020).
Generally, in countries with strong universal health care and social protection systems,
such as Sweden and Norway, SES was found to have no impact on survival. In contrast,
in countries without universal health insurance such as the United States, SES tends to
affect both access and survival. However, with the exception of Hagen et al. (2015), none
of these studies have attempted to separate the indirect and direct effects of SES. We
contribute to this literature by showing that SES plays both a direct and indirect role in
affecting survival. Separating direct and indirect effects may be helpful in reconciling the
mixed findings in previous studies. Our study also adds to the literature by considering

how SES interacts with short-term capacity of hospitals to affect access to care.

2 Empirical Model

We distinguish between two types of AMI, ST-elevation myocardial infarctions (STEMI)
and Non-ST-elevation myocardial infarctions (NSTEMI). Although under current best-
practice guidelines, both types of AMI patients should receive ICA as soon as possible,
they differ in urgency (Wright et al., 2011) and, as will be shown below, in patient char-
acteristics. These differences have implications on the treatment options and survival,
and more importantly, on how the availability of short-term capacity affects access and

subsequent survival.

For each type of AMI, we implement a recursive system of three probit equations with
dependent variables (y1;, Yo;, ¥3:), which respectively denote the observed binary outcome
of whether patient 7: (i) is admitted to a catheterisation capable hospital, (ii) receives

ICA, and (iii) survives 30 days post discharge. Underlying each of the binary outcomes



is a latent index such that:?

)1 ity > 0

Vi 0 otherwise.
where j = 1,2, 3. For each patient ¢, let .S; denote a vector of SES variables, X;; denote
a vector of personal characteristics, and A; is a scalar denoting the available capacity

on admission. The latent indices are related to the observed covariates as follows:

Yy = Sith + Xubh + e (1)
Yai = Y157 + Sifly + ad; + (A; X S))A + Xoi Bz + €o; (2)
Ysi = Y2i0 + Siblz + X3:05 + €3 (3)

where the error terms, (ey;, €2;, €3;), are assumed to follow a trivariate normal distribution

N(0,Q) where

1 pi2 pis
Q= 1 P23
1

and pj;, are parameters capturing the cross-equation correlation. We will test the joint
significance of p;, using a Wald test to determine our preferred model. We refer to
(1)—(3) above as respectively the hospital, ICA and survival equations. The ICA equa-
tion includes an interaction term of available capacity and SES, thus allowing for the
possibility that capacity constraints may have differential impact on the probability of

receiving ICA for different SES groups.

In this specification, SES affects admission to a catheterisation-capable hospital, ICA
and survival, and in the latter two equations, directly and indirectly. In the ICA equa-
tion, SES directly affects ICA via the parameter 6y, and indirectly via v through the
hospital equation by affecting admission to catheterisation-capable hospital; Likewise,

in the survival equation, SES affects survival directly via 5, and indirectly via the

2Tt should be pointed out that we adopt the latent index formulation to describe the unobserved
processes that determine the binary outcomes. We do not intend to rationalise this model in a utility-
maximising and user choice modelling framework. Given that AMI is an emergency condition and
patients are typically rushed to the nearest hospital, user preferences and choice are unlikely to be an
important consideration.



ICA equation which in turn is affected directly and indirectly by SES via the hospital

equation.

Identification

The identification and estimation of recursive multiple-equation probit models with en-
dogenous dummy regressors have long been controversial. Heckman (1978) and Wilde
(2000) suggest that, to the extent that each equation contains at least one varying ex-
ogenous regressor, the system can be identified by the functional form and thus needs
no exclusion restrictions, provided there is sufficient variation in the data. However,
others have argued that such identification will be empirically fragile a fortiori due to
its heavy reliance on the particular model assumptions, including linear indexing in
the latent variables, threshold crossing rules for binary variables and a separable error

structure with a prescribed Gaussian distribution (e.g., Jones 2007, p.44).

In view of the ongoing controversy and to reinforce the identification, we rely on exclusion
restrictions on top of the functional form. Note that there are two endogenous variables
in the system: (i) whether a patient is admitted to a catheterisation capable hospital
(y1;) in the ICA equation (2), and (ii) whether a patient receives ICA (ys;) in the
survival equation (3). Note also that because of the recursive structure, parameters in
the hospital equation (1) are identified without requiring any restrictions. To identify
parameters in the ICA and survival equations, we need to impose at the minimum two

exclusion restrictions.

First, we specify that Remoteness enters hospital equation (1) but not the ICA equation
(2), to identify the coefficient v in the ICA equation (2). The rationale is that patients
living in remote areas generally have to travel a longer distance to a hospital, and
there are far fewer catheterisation-capable hospitals outside the metropolitan areas in
Australia. However, once patients are admitted to a hospital, remoteness should not be

a factor that affects the decision of doctors and hospitals in determining whether the



patient should receive ICA or not.

Second, the variable Catheterisation capacity and its interactions with the SEIFA index
and private patient status enter the ICA equation (2) but not the survival equation (3),
to identify the coefficient § in the survival equation (3). We argue that available catheter-
isation capacity only affects survival via its effects on the probability of receiving ICA;
it should not have any direct effects on survival. This is a reasonable assumption since
catheterisation capacity is closely tied to the functioning of the catheterisation labora-
tory, a purpose-built facility for ICA and other catheterisation procedures. Its utilisation
has little, if any, correlation to the utilisation and functioning of other departments and

facilities in a hospital.

The above exclusion restrictions form the backbone of our identification strategy. In
addition, we also specify several other restrictions. A schematic presentation of all the

exclusion restrictions is shown in Figure 1.

Survive 30 days

Receive ICA -
Remoteness
Adm to cath-capable /’
hospital P / Admitted to teaching hosp
Semoiehesy Admitted-during-weekend
Remoteness Admitted to teaching hosp Relative local prevalence
of AMI

Ao .
Admitted during weekend

Relative local prevalence

Admitted during weekend

Relative local prevalence
of AMI

No. public hospitals within
10km

of AMI Eapacity
No—pubtichospitats-within
No. public hospitals within Toknr e 5 SEHFA
10km
i Capacity Capacity-x-Private-patient
Eapacity
Capacity x SEIFA
. [
Capacity x SEiFA
Capacity x Private patient L]
c . Pri " . '

Excluded
variable

Figure 1: A schematic overview of exclusion restrictions

In particular, based on the evidence that the effects of weekends on AMI

mortality



are indirect due to differences in access to care, weekends are found to have no direct
mortality effects (Kostis et al., 2007; Fiorentino et al., 2018), we include the Weekend

dummy in the hospital equation (1) and ICA equation (2), but not the survival equation

(3).

We further argue that the relative local prevalence of AMI during the admission week
affects survival through its effects on access to care, by itself the relative local prevalence
of AMI has no direct bearing on the survival of an AMI patient. On this basis, we specify
that the variable Relative local prevalence of AMI enters the hospital equation (1) and
ICA equation (2), but not the survival equation (3).

Another restriction we impose is to exclude the variable Number of public hospitals
within 10 kilometre radius from the ICA equation (2), on the basis that this variable
is an indicator of options available to patients in an AMI event—a greater number of
public hospitals in the area increases the likelihood of finding a catheterisation-capable
hospital nearby. This should have no bearing on whether the patient receives ICA or

not once the patient has been admitted to a hospital.

We note that the imposition of additional restrictions gives an over-identified system.
This means the validity of the additional exclusion restrictions can be formally tested.
In our empirical implementation we carry out several over-identification tests and report

the results in the Robustness section below.

Catheterisation capacity

To implement the empirical model, a key variable is the short-term available catheter-
isation capacity faced by a patient admitted on a given day. We do not observe this
information, but we observe the number of all catheterisation procedures performed
each day. This is a count variable capturing all catheterisation procedures, not just
ICA. A catheterisation laboratory typically also performs many other procedures such

as angioplasty, pacemaker implants and replacements, etc, in addition to ICA.

9



Since we observe the number of catheterisation procedures performed at each hospital,
we regard the potential capacity of a hospital on any day as the maximum the hospital
managed to perform in the past fortnight.®> AMI is an emergency condition, patients
presented with AMI are generally given priority access to the catheterisation laboratory
over other patients. Therefore, for a given potential capacity, the available capacity
faced by a patient admitted in a given day is simply the difference between the potential
capacity and capacity already in use on the day. However, because the time of admission
is not observed in the data, the capacity in use is approximated using the average usage
of the day and the following day. This averaging is to allow for the possibility that the
patient could be admitted late in the day, and hence the following day’s capacity usage
would apply. This approximation may introduce measurement errors into the capacity
calculation, but since the occurrence and timing of AMI are random, we do not expect

such measurement errors to be correlated with other covariates in our model.

Formally, we let C; be the count of catheterisation procedures performed on day ¢. The
short-term potential capacity of the admitting hospital at ¢ is derived as the maximum

number of procedures a hospital ever delivered in the past fortnight:
C«;nax = maX(Ct, Ct—].7 c. 7Ct—13)-

The available capacity faced by patient ¢ admitted at ¢ is the difference between potential

capacity and capacity in use:
A; = O™ —(Cy+ Ciy)/2,

where capacity in use at t is approximated as the average number of performed on days

t and ¢t + 1.

In the empirical implementation, we allow for nonlinear effects of available capacity by

3Instead of the past fortnight, we also use the maximum in the previous 7 and 30 days as robustness
checks. We do not find any notable differences in the results. A summary of our results is available
upon request.

10



defining a categorical variable as follows:

Very low if A; < 1.5,

Low if 1.5 < A; < 3.5,

Medium if 3.5 < A; < 6.5,

High if 4; > 6.5.

The cut-off values of 1.5, 3.5, and 6.5 correspond to the 25th, 50th, and 75th percentiles

of the sample values of A;.

Estimation

We estimate the system of three equations (1)—(3) using the user-written command
Conditional (recursive) mized-process (cmp) in Stata (Roodman, 2011). The calcula-
tion of the cumulative joint normal distribution is via simulation using the Geweke-

Hajivassiliou-Keane (ghk) algorithm (Gates, 2006).

The quantities of interest are the total, direct and indirect marginal effects of a given
SES measure, s;, on an outcome, for instance, survival (ys;). Assume s; appears in all
three equations (1), (2) and (3), respectively denoted by s1;, $o; and s3;. The total effect

is given by

OF (y?)z‘ly%ayli; Si, Xi, Az‘) :3E (y3i|y2ia Yii, Siy Xi, Ai) i OF (ySi|y2ia Y1is Si, Xi, Ai)
0s; 053 0s9;
oE (y3i|?/2u Y1is Si, Xi, Ai)

+ .
aSu‘

The direct effect therein is:

O (ysilyair yris Si, Xi, As)
053i ’

where X; = X1; U Xy, U X3;. We derive the algebraic expressions for total, direct and
indirect effects in Appendiz A.

We are also interested in the marginal effects of available capacity, and its interactions

with SES. Note that available capacity only enters the ICA equation, there are only direct

11



effects in relation to available capacity on this equation. For the survival equation, there
will only be indirect effects since available capacity is assumed to have no direct effect

on survival.

The partial effects of SES interacting with available capacity are of particular interest.
We are interested in comparing the partial effect of SES on ICA when available capacity
is low, i.e., when capacity could be constrained such that rationing is more likely to
occur, with situations when available capacity is high, i.e., when there is no capacity
constraint and rationing is unlikely. For a given SES measure, s;, we denote Ay, 4, as

its partial effect at specific capacity level, a. That is,

A _ oL (y2i|y1¢,5i,X2¢,Ai)
silAi =

)
882' Ai=a

where a ranges from ‘very low’ to ‘high.’

3 Data

We made use of hospital administrative data from the state of Victoria, Australia. The
main data were extracted from two datasets—the Victorian Admitted Episodes Dataset
(VAED) and Victorian Emergency Minimum Dataset (VEMD). The data cover a seven-
year period, 2004/05-2010/11. The datasets were maintained by the Victorian Depart-
ment of Health and Human Services (DHHS), which manages public hospitals in the
state and also in charge of regulating private hospitals in matters such as patient safety.
The data were linked to the death registry records by DHHS to obtain the date of death

for deceased patients.

The population of our study consisted of all patients admitted to hospitals with a di-
agnosis of STEMI or NSTEMI who had no prior AMI admissions in the previous five
years. Patients experiencing prior AMI episodes in the previous five years were excluded
since their case complexity and survival rates are very different from those with no prior

AMI history. Identification of STEMI and NSTEMI was via the International Statisti-

12



cal Classification of Diseases and Related Health Problems, Tenth Revision, Australian
Modification (ICD-10-AM), which is an expanded version of the World Health Organi-
zation’s ICD-10 codes. A hospital episode can include ED presentations and hospital
admissions associated with an AMI; episodes up to 24 hours between separations and
admissions were included in the same AMI hospital admission episode. For episodes
where multiple hospitals were involved, admission to catheterisation capable hospitals,
access to ICA, and the subsequent survival outcome were attributed to the hospital of
first admission. This is because, due to the urgent nature of AMI, the first few hours
are of critical importance for administering the appropriate treatment. This means hos-
pitals treating the patient in the first admission should be responsible for making the

right treatment decisions.

We further exclude patients who underwent ICA or PCI in the previous 12 months
(n =9,322), and patients younger than 35 or older than 90 (n = 4, 541). These patients
are excluded because they tend to have very different risk profile and case complexity,
as such their probabilities of ICA and survival are likely to be different from those of

other patients.

After applying the exclusion restrictions, we obtained a sample comprising 13,468
STEMI and 42,167 NSTEMI admissions over the sample period. The admission episodes
occurred in 144 hospitals, of which 47 were private hospitals. Not all hospitals were
catheterisation capable, which we define as hospitals that could perform at least 80
catheterisation procedures a year.* Of the 144 hospitals in the sample, 32 were catheter-
isation capable, 19 of which were private hospitals. Note that an AMI patient may be
admitted in a non-catheterisation capable hospital (perhaps because it was the nearest
hospital), be assessed and stabilised as necessary and transferred to a catheterisation
capable hospital to undergo ICA and further treatment. In this case the access to ICA

and outcomes were attributed to the admitting hospital.

4We determine this criterion of 80 procedures a year by consulting with a senior cardiologist working
in a major public hospital in Victoria. The criterion translates to about 1.5 procedures per week, which
although arbitrary, is generally agreed as a credible indicator of catheterisation capability.

13



Most variables were constructed in a straightforward manner. For the three SES mea-
sures we use, (i) remoteness was classified into three categories (major cities, inner
regional and outer regional areas); (ii) SEIFA is a suite of composite indices published
by the ABS, which map to the Statistical Local Area (SLA) of a patient’s residence (a
SLA is a geographical classification unit defined by the ABS for the purpose of data
collection; see ABS, 2006). It comprises four different indices. The specific index used
here is the Index of Relative Socio-Economic Disadvantage. For the estimation, areas
were categorised into quintiles based on the index. Patients in the first quintile are the
most disadvantaged while those in the fifth are the most advantaged; and (iii) private
patient status, which is constructed as a binary variable indicating whether the patient

was admitted as a private or public patient.

A variable that requires further explanation is ‘Relative local prevalence of AMI during
admission week’, which was constructed to capture demand shocks in local areas. The
count of AMI for each week was obtained for each SLA in the state. Next, the week with
the highest count of AMI during the quarter of each year was identified. This represented
the busiest week for hospitals in the SLA in attending to AMI patients. For a patient
with AMI admitted during a specific week, we measured the relative prevalence of AMI
by taking the ratio of the total count of AMI in that week to the busiest week in the
quarter. A higher ratio indicates hospitals in the SLA were more likely to face capacity
pressure and thus less likely for a patient to get admitted to a catheterisation-capable

hospital.

4 Results

Summary statistics

We present some summary statistics about the sample in Table 1. For the outcomes of

interest, we see that most patients managed to get admitted to catheterisation capable

14



hospitals—about 90 per cent for STEMI and 82 per cent for NSTEMI patients. The
rate of ICA differed between STEMI (74 per cent) and NSTEMI (40.4 per cent), likely a
reflection of the greater urgency of the former. The survival rate 30 days post discharge
was slightly lower for STEMI at 88.4 per cent, compared to 90.8 per cent for NSTEMI

patients.

In terms of demographic characteristics, there were more male than female patients,
STEMI patients were slightly younger than NSTEMI patients—the average age of pa-
tients was 66 years for STEMI and 73 years for NSTEMI. The majority of patients were
married, and Australian born. NSTEMI patients had more other complex medical con-
ditions than STEMI patients, as reflected in the higher average Charlson comorbidity
score of STEMI patients. Slightly above half of all patients arrived by ambulance, and
about a quarter of all patients were admitted during weekends. About 36 per cent of
STEMI patients were admitted to a teaching hospital, compared to about 29 per cent of
NSTEMI patients. For STEMI patients, about 22 per cent of admissions occurred when
the available catheterisation capacity was at very low level, 22 per cent at low, 30 per
cent at medium, and the remaining 27 per cent at high capacity level. The correspond-
ing percentages for NSTEMI patients were 28, 21, 27, and 23 per cent. Not surprisingly,
given the geographic concentration of Australia’s population, most patients (75 per cent
or more) resided in major cities, and only about 6 per cent resided in outer regional
or remote areas. A significant proportion of AMI patients were admitted as private

patients—about 35 per cent of STEMI patients and 31 per cent of NSTEMI patients.

Total, indirect and direct effects

We estimate the system of probit equations separately for STEMI and NSTEMI patients.
We first did the estimation without imposing any constraints on the cross-equation
correlation structure of the errors, and then test the correlation structure using the

Wald test. Note that the likelihood ratio test does not apply here due to the clustering
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Table 1: Summary statistics, STEMI and NSTEMI patients

STEMI NSTEMI
Mean s.d. Mean s.d.

Admitted to cath-capable hosp 0.895 0.306 0.819 0.385
ICA 0.740  0.439 0.404 0.491
Survived 30 days post discharge 0.884 0.320 0.908 0.289
Gender (Male = 1) 0.698  0.459 0.586  0.493
Age 66.297 13.639 72.997 12.566
Married 0.628  0.483 0.563  0.496
Australian born 0.591 0.492 0.559  0.496
Charlson comorbidity score 1.154  0.423 1.346  0.595
Arrival by ambulance 0.520 0.500 0.541 0.498
No. of hospitals within 10KM 4598 5.009 4911 5.165
Relative local prevalence of AMI  0.692  0.278 0.685  0.277
Teaching hospital 0.356 0.479 0.292  0.455
Admitted during weekends 0.264 0.441 0.253 0.434
Available cath capacity cat.

Very low 0.217  0.412 0.283  0.451

Low 0.218 0.413 0.212  0.408

Medium 0.297  0.457 0.272  0.445

High 0.268 0.443 0.233 0.423
SEIFA disadv quintile

1st 0.149  0.356 0.161  0.367

2nd 0.217  0.412 0.219 0.413

3rd 0.159  0.365 0.156  0.363

4th 0.287  0.452 0.272  0.445

5th 0.188  0.391 0.193  0.394
Remoteness

Major cities 0.750 0.433 0.761 0.426

Inner regional areas 0.192 0.394 0.181  0.385

Outer regional areas 0.059 0.235 0.057 0.232
Private patient 0.350 0.477 0.305 0.460
No. admissions 13,468 42,167
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of standard errors. The Wald test produced Chi-square test statistics (with 3 degrees of
freedom) of 18.63 (p < 0.001) and 3.99 (p = 0.263) for respectively STEMI and NSTEMI.
We therefore reject the null hypothesis of uncorrelated errors for STEMI but not for
NSTEMI patients. Based on the test results, we chose our preferred specification as

correlated errors for STEMI and uncorrelated errors, i.e., independent probit equations

for NSTEMI.

After estimating our preferred specifications, we obtain estimates of marginal effects of
SES on the probabilities of admission to catheterisation capable hospitals, ICA, and
30-day survival. Table 2 shows, for STEMI and NSTEMI patients, the estimated total
effects of the three SES variables. The total effects are decomposed into direct and
indirect effects in Table 3. A complete listing of coefficient estimates and standard

errors can be found in Appendiz B.

The results in Table 2 show that remoteness has a significant and large effect on the
probability of patients being admitted to catheterisation capable hospitals. Compared
to patients in major cities, STEMI patients in inner regional areas were 13.6 percentage
points less likely to be admitted to a catheterisation capable hospital, while those in
outer regional areas were 25.3 percentage points less likely. The corresponding effects on
NSTEMI patients were even larger, at 21.9 and 36.2 percentage points for respectively
patients in inner regional and outer regional areas. Unlike remoteness, SEIFA has no sig-
nificant effects on the probability of being admitted to catheterisation capable hospitals
for either STEMI or NSTEMI patients. Compared to public patients, private patients
appeared to have a greater likelihood of gaining admission to a catheterisation-capable
hospital, the difference is 6.2 percentage points for STEMI and 7.9 percentage points for
NSTEMI patients.

For both STEMI and NSTEMI patients, the probability of receiving ICA is significantly
affected by remoteness and private patient status, and by SEIFA for STEMI but not
NSTEMI patients. Note that remoteness does not directly enter the ICA equation
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(2), and thus the estimated total effects consist entirely of the indirect effects via the
hospital equation (1). STEMI patients in inner regional and outer regional areas were
respectively 11.0 and 21.5 percentage points less likely to receive ICA than patients in
major cities. The corresponding probabilities for NSTEMI patients were 8.8 and 15.4

percentage points lower.

Table 2: Total effects of SES on STEMI and NSTEMI patients

Admit to
cath-capable Receive 30-day
hospital ICA Survival
Y1 p-val Y2 p-val Y3 p-val
STEMI
Remoteness (v major cities)
Inner regional -0.136* 0.014  -0.110* 0.013 -0.015 0.115
(s.e.) (0.055) (0.044) (0.010)
Outer regional -0.253***  <0.001 -0.215*** <0.001  -0.026* 0.033
(s.e.) (0.073) (0.060) (0.012)
SEIFA quintile (v 1st)
2nd quintile 0.013 0.630 0.0447 0.054 0.004 0.655
(s.e.) (0.027) (0.023) (0.010)
3rd quintile 0.013 0.691 0.033 0.222 0.005 0.633
(s.e.) (0.033) (0.027) (0.010)
4th quintile 0.026 0.449 0.072* 0.041 0.011 0.211
(s.e.) (0.034) (0.035) (0.009)
5th quintile 0.025 0.412 0.072* 0.019 0.003 0.777
(s.e.) (0.031) (0.031) (0.011)
Private patient (v public) 0.062**  0.006 0.117***  <0.001 0.055***  <0.001
(s.e.) (0.023) (0.023) (0.006)
NSTEMI
Remoteness (v major cities)
Inner regional -0.219* 0.025  -0.088* 0.028 -0.003 0.573
(s.e.) (0.098) (0.040) (0.006)
Outer regional -0.362***  <0.001 -0.154*** <0.001  -0.004 0.601
(s.e.) (0.094) (0.041) (0.008)
SEIFA quintile (v 1st)
2nd quintile -0.021 0.613 0.038 0.153 -0.003 0.725
(se.) (0.041) (0.027) (0.008)
3rd quintile -0.003 0.954 0.034 0.265 0.009 0.199
(s.e.) (0.048) (0.030) (0.007)
4th quintile -0.052 0.451 0.036 0.370 -0.003 0.707
(s.e.) (0.069) (0.040) (0.008)
5th quintile -0.053 0.378 0.040 0.300 -0.004 0.678
(s.e.) (0.060) (0.039) (0.010)
Private patient (v public) 0.079* 0.015 0.131***  <0.001 0.014** <0.001
(s.e.) (0.032) (0.028) (0.003)

Notes: Standard errors obtained via delta method.
Significance levels:  T: 10% *: 5% **: 1% ***: 0.1%
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Having private insurance not only increases the likelihood of geting admitted to
catheterisation-capable hospitals but also increases one’s likelihood of receiving ICA.
The advantage over public patients was respectively 11.7 and 13.1 percentage points
higher for private STEMI and NSTEMI patients. Being in higher (i.e., advantageous)
SEIFA quintiles appear to increase the likelihood of receiving ICA for STEMI patients
but no statistically significant difference was found for NSTEMI patients. STEMI pa-
tients in the 4th and 5th quintiles were on average 7.2 percentage points more likely to

receive ICA, compared to those in the lowest quintile.

The probability of survival 30 days post discharge was significantly affected by private
patient status for both STEMI and NSTEMI patients, and for STEMI patients, remote-
ness also played a role; the probability did not appear to vary significantly by SEIFA
quintile for both groups of patients. Compared to public patients, those admitted as
private patients have a higher probability of survival, by about 5.5 and 1.4 percentage
points for respectively STEMI and NSTEMI patients. STEMI patients in outer regional
areas were less likely to survive than patients in major cities—the probability is lower
by 2.6 percentage points. It is worth noting that the effect of remoteness on survival is
the combination of its direct and indirect effects, where the indirect effect is via the ICA

equation (2) whose remoteness effects are in turn indirect via the hospital equation (1).

The total effects shown in Table 2 are decomposed into direct and indirect effects in
Table 3. Note that the hospital equation is omitted here since there are no indirect
effects, all effects are by construction direct for this equation. Further, as noted before,
the effects of remoteness on receiving ICA are also entirely indirect via the hospital

equation.

The results show that, on the probability of receiving ICA, the effects are more direct
than indirect, whereas there does not appear to be any clear tendency on survival.
Notably the effects of private patient status on the probability of receiving ICA are
predominantly working through the direct effect. For STEMI patients, the direct effect
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was highly statistically significant and at 7.0 percentage points, compared to the indirect
effect of 4.8 percentage points. The contrast is even larger for NSTEMI patients the
direct effect was 9.7 percentage points, compared to the indirect effect of 3.4 percentage

points.

Compared to those in the first quintile of SEIFA, patients in the fourth and fifth quin-
tiles were more likely to receive ICA, with the direct effects dominating the indirect
effects. For STEMI patients, the direct effects were around 5 percentage points, while
the indirect effects were less than half of those of indirect effects and not statistically
significant. Similarly, for NSTEMI patients, the direct effects were similarly about 6-7

percentage points, and the indirect effects were not statistically significant.

We next turn to the estimated effects of the SES measures on survival. It is worth noting
that the indirect effects are the cumulative effects via admission to catheterisation hos-
pitals and receiving ICA. Private patient status appears to have a large and significant
direct effect on survival for STEMI patients, at 4.7 percentage points, compared to the
indirect effect of 0.8 percentage point which is statistically insignificant. For NSTEMI
patients, the direct effect of private patient status was small and not statistically signif-
icant, whereas the indirect effect was 1.0 percentage points and significant. Remoteness
appears to have a negative effect on the survival of AMI patients. For STEMI patients
neither its direct nor indirect effects are statistically significant, although their combined
effect, as shown in Table 2 above, is statistically significant. For NSTEMI patients, the
indirect effects of Remoteness are statistically significant, but not the direct effects. We
note that the magnitude of indirect effects are comparable for STEMI and NSTEMI
patients, suggesting that both groups faced similar access disadvantage, although only
the effects on NSTEMI patients are statistically significant. Lastly, the results show
that SEIFA did not appear to have any statistically significant direct or indirect effects
on survival for either STEMI and NSTEMI patients.

We next examine the estimated effects of available ICA capacity, as capacity constraints
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Table 3: Direct and indirect effects of SES, STEMI and NSTEMI patients

Receive ICA (y2) Survival (y3)
Indirect (fr y1) Direct Indirect (fr y1 & y2) Direct
M.E. p-val M.E. p-val M.E. p-val M.E. p-val
STEMI
Remoteness (v major cities)
Inner regional -0.110* 0.013 - -0.006 0.312 -0.009 0.464
(se) (0.044) (0.006) (0.012)
Outer regional -0.215***  <0.001 - -0.012 0.266 -0.014 0.390
(se) (0.060) (0.011) (0.016)
SEIFA quintile (v 1st)
2nd quintile 0.009 0.618 0.0351 0.080 0.003 0.348 0.001 0.932
(se) (0.018) (0.020) (0.004) (0.011)
3rd quintile 0.009 0.683 0.023 0.182 0.002 0.397 0.002 0.830
(se) (0.023) (0.018) (0.003) (0.010)
4th quintile 0.020 0.427 0.052* 0.022 0.005 0.338 0.006 0.590
(se) (0.025) (0.023) (0.006) (0.011)
5th quintile 0.019 0.374 0.053** 0.010 0.006 0.315 -0.003 0.827
(se) (0.022) (0.021) (0.006) (0.012)
Private (v public) patient 0.048** 0.008 0.070*** < 0.001 0.008 0.248 0.047*** < 0.001
(se) (0.018) (0.014) (0.007) (0.009)
NSTEMI
Remoteness (v major cities)
Inner regional -0.088* 0.028 - -0.006* 0.028 0.002 0.627
(se) (0.040) (0.003) (0.005)
Outer regional -0.154***  <0.001 - -0.009*** <0.001 0.005 0.413
(se) (0.041) (0.003) (0.006)
SEIFA quintile (v 1st)
2nd quintile -0.010 0.628 0.048* 0.028 0.003 0.117 -0.006 0.392
(se) (0.020) (0.022) (0.002) (0.007)
3rd quintile -0.001 0.955 0.035% 0.083 0.003 0.228 0.006 0.360
(se) (0.023) (0.020) (0.002) (0.007)
4th quintile -0.025 0.471 0.061** 0.006 0.003 0.279 -0.007 0.416
(se) (0.034) (0.022) (0.003) (0.008)
5th quintile -0.027 0.410 0.068** 0.001 0.004 0.221 -0.008 0.388
(s.e.) (0.033) (0.021) (0.003) (0.009)
Private (v public) patient 0.034* 0.019 0.097*** < 0.001 0.010*** < 0.001 0.004 0.173
(s.e.) (0.015) (0.020) (0.002) (0.003)

Notes: Standard errors obtained via delta method.
Significance levels: 1 10%  *: 5% **: 1% ***: 0.1%
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could cause rationing which may adversely affect survival. Recall that capacity only
enters the ICA equation but not the other equations, and thus the estimated effects in
Table 4 show only direct effects on ICA and indirect effects on survival. The estimates
suggest that, as capacity rises with reference to the base category of ‘very low’ avail-
able capacity, both ICA and survival probabilities rise, although the increases are not

statistically significant.

Table 4: Marginal effects of available capacity, STEMI and NSTEMI

Receiving ICA (y2) Survival (y3)
Direct Indirect (from ys)
M.E. p-val M.E. p-val
STEMI
Available capacity (v Very low)
Low 0.011  0.466 0.001  0.529
(0.016) (0.001)
Medium 0.024  0.347 0.002  0.400
(0.025) (0.002)
High 0.032  0.232 0.003 0.326
(0.027) (0.003)
NSTEMI
Available capacity (v Very low)
Low 0.023 0.184 0.002 0.195
(0.017) (0.001)
Medium 0.028  0.333 0.002 0.358
(0.029) (0.002)
High 0.028  0.380 0.002 0.395
(0.032) (0.003)

Note: Standard errors obtained via delta method.

Although available capacity has no significant effects on ICA and survival, its interactions
with SES variables show a pattern that suggests inequity in access to ICA. Figures 2 and
3 show the partial effect estimates at different levels of available capacity of respectively
private patient status and SEIFA. In Figure 2, both Figures 2(a) and 2(b) show that
the probability of ICA access between private and public patients has a gap across all
capacity levels, and the access gap is larger for NSTEMI than STEMI patients, possibly
due to the more urgent nature of STEMI.

Figure 3 shows that ICA access varies between patients in different SEIFA quintiles
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at different capacity levels. When the available capacity is ‘very low’, the difference
in probability of receiving ICA between the first and fifth quintiles is about 0.2 for
STEMI and 0.15 for NSTEMI patients in favour of the advantaged group, and both
are statistically significant at 5% level. The gap narrows and becomes statistically
insignificant as capacity rises from ‘very low’ to ‘low” and beyond. Importantly, the gaps
are narrower for patients in the second, third and fourth quintiles, and not statistically

different from zero, except in a couple of instances for patients in the third quintile.
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Figure 2: Partial effects (A,;|4,), private patient status and available capacity on ICA

5 Robustness

We examine the robustness of our results from three different angles. We first estimate
an alternative specification with the least number of exclusion restrictions. Our second
robustness check is to exploit the over-identified specification of our base model to con-
duct a series of over-identification tests. The third is using an alternative functional
form specification in the form of the linear probability model (LPM). In all cases our

results are robust to the alternative specifications.
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Figure 3: Partial effects (A)|4,), SEIFA and available capacity on ICA
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Model with least number of exclusion restrictions

Recall that, to identify the recursive system of probit equations (1)—(3), we require at
the minimum two exclusion restrictions (on top of the functional form identification of
probit). That is, one variable in the hospital equation (1) is to be excluded from the
ICA equation (2), and another variable in the ICA equation (2) must not appear in the
survival equation (3). For this robustness check, we estimate just such a system using
respectively remoteness and catheterisation capacity as the two excluded variables. We
call this the just-identified probit model, although strictly speaking this ‘just-identified’

description is only true for linear models.

We present the results on total, direct and indirect effect estimates of SES on access to
catheterisation hospitals, receiving ICA, and eventual survival 30 days post discharge
in Appendix C (Table C1 and C2). From the results, we find no change in the sign or
statistical significance of any of the estimated effects. Moreover, very similar effect size
estimates are reported with respect to access to catheterisation hospitals and receiving
ICA. Some variation in effect size is found in relation to survival 30 days post discharge,
but their sign and statistical significance remain unchanged. Our overall conclusions
remain unchanged with the estimates from the just-identified model—private patient
status and remoteness affect access to care and have significant direct and indirect

effects on survival.

Over-identification tests

Since our base model is over-identified, i.e., having more exclusion restrictions than the
minimum required to identify the two endogenous variables, we can test the validity of
the additional exclusion restrictions. In particular, we test our base model against the
just-identified model discussed above through a series of over-identification tests. The
tests examine whether: (i) the Weekend dummy should enter the survival equation (3);

(i) the Relative local prevalence of AMI should enter the survival equation (3); and (iii)
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the Number of public hospitals within 10 kilometer radius should enter the ICA equation
(2). For ease of reference, we denote the parameters of these variables as respectively

aq, ag and as.

Notwithstanding the extensive literature available on over-identification tests for linear
models, there is a dearth of econometric results in relation to tests specifically designed
for models with discrete outcomes. In a similar spirit to the Refutability test described
in Guevara (2018), we conduct a simple test to jointly test the three additional exclusion
restrictions as follows. In essence, we regard the just-identified model, which has the
least number of exclusion restrictions, as an augmented version of our base model, or put
differently, our base model is nested within the just-identified model. The null hypothesis
of the test is: Hy: a3 = 0,a0 = 0,3 = 0. In addition to testing all three restrictions as
a joint test, we also test them in pairwise combinations and individually. For each test,
a different augmented model is separately estimated for STEMI and NSTEMI patients.
The Wald test is used due to the presence of clustered standard errors. The test results
are summarised in Table 5, which shows that the null hypothesis cannot be rejected
in any of the 14 tests. The test results lend support to the validity of the additional

exclusion restrictions imposed in our base model.

Linear probability model

Our final robustness check is to estimate a system of recursive linear equations in the form
of LPM. The specification is exactly the same as our base model except the functional
form is linear instead of probit. The advantages of LPM are its simplicity and that its
estimation does not require distributional assumptions. However, a key disadvantage of
LPM is it does not confine probabilities to within [0, 1]. After estimating the LPM model,
we compute the total, direct and indirect effects and report the results in Appendix C
(Tables C3 and C4). Comparing with our base model, LPM produces very similar results

on total, direct and indirect effects of SES, except that its effect sizes are generally a
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Table 5: Over-identification test results, STEMI and NSTEMI patients

STEMI NSTEMI

H0:a1=0,042:0,043=0

X2 3.42 1.31
p-value 0.331 0.728
H0:a1:0,a2:0

X2 0.68 1.15
p-value 0.713 0.564
HO:aQ:O,a;;:O

x> 2.12 0.68
p-value 0.346 0.712
Hoza1:0,a3:0

x> 3.37 0.96
p-value 0.185 0.619
H() Lo = 0

X2 2.09 0.02
p-value 0.148 0.898
H() Qg = 0

x> 0.02 0.45
p-value 0.895 0.501
H() L3 = 0

x> 1.83 0.28
p-value 0.176 0.599
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little larger, resulting in slightly more estimated effects that are statistically significant.
The larger effect size is likely resulting from the LPM feature that does not restrict
the probability of modelled events to fall within 0 and 1. For this and other reasons,
LPM is becoming less frequently used for modelling discrete outcomes (Greene, 2012).
Nonetheless, for our purposes, the LPM results indicate that our results are robust to

the probit model assumptions.

6 Discussion

By estimating a recursive system of equations, we disentangle the direct and indirect
effects of SES on survival of AMI patients. The indirect effects work through access to
care, first through attending a catheterisation capable hospital and second by receiving
ICA. We do not consider these differences in access and outcomes to reflect personal
preferences, since in the context of AMI, care needs are urgent and the clinical guidelines
for ICA are well established. Personal preferences such as whether to receive care or

how much care is preferred have less relevance in this situation.

Our results underscore the importance of accounting for indirect effects in assessing the
impact of SES on outcomes of AMI patients. In many instances we see that indirect
effects have significant and material impacts on access and survival of AMI patients,
e.g., the indirect effects of remoteness on the likelihood of receiving ICA and survival

for NSTEMI patients.

Remoteness is found to be key in affecting admissions to catheterisation hospitals, which
have large indirect effects on access to ICA, and could in turn affect survival. The
result highlights the importance of getting to a catheterisation capable hospital for AMI
patients. Those in regional and remote areas are more likely to be admitted to non-
catheterisation hospitals and transferred later. They may have missed the ideal window

for ICA, which could have adversely affected survival.
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Private patient status turns out to be a highly relevant factor affecting ICA access and
survival for AMI patients. It has large direct effects on being admitted to catheterisation-
capable hospitals and receiving ICA, which in turn affects survival. This result likely
reflects the wider access by patients with private health insurance who can access both
private and public hospitals with catheterisation facilities. Wider access has in turn
enhanced the survival of private patients. This indirect effect of private patient status
on survival via wider access is relatively large for NSTEMI patients and statistically
significant. The direct effect of private patient status on survival is likely a reflection of
income or wealth, since wealthier individuals are overwhelmingly more likely to purchase

private health insurance in Australia (Palangkaraya and Yong, 2005).

Even though the total effects of SEIFA index quintiles are mostly statistically insignif-
icant, its direct effects on receiving ICA show that patients in the fifth quintile were
more likely to receive ICA than those in the first quintile for both STEMI and NSTEMI
patients. The difference in access by SEIFA, however, did not appear to impact the
survival of both STEMI and NSTEMI patients.

Taken together, our results show that both direct and indirect effects are important
in affecting the access to ICA and the subsequent survival of AMI patients. These
results suggest that while improving the access to ICA (and other cardiac procedures)
is important, to substantially improve the survival of disadvantaged AMI patients, the
direct effects of low SES (e.g., perhaps because of lack of education and low awareness)
must also be addressed. Several reasons may account for the higher survival probability
of high SES patients, including their generally better health, and their ability to comply
with treatment recommendations (Tang et al., 2013; Hagen et al., 2015).

It is noteworthy that although available catheterisation capacity has no significant effects
on access to ICA or subsequent survival, its interactions with SES show that the most
disadvantaged patients have lower access to ICA. In particular, its interaction with

SEIFA show that access to ICA tends to disadvantage patients in the lowest SEIFA
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quintile when available capacity is limited, i.e., when rationing may become necessary.
As capacity rises the access gap narrows and generally disappears. Also notable is that
the gaps between other SEIFA quintiles (versus the most advantaged) are not as wide and
in most instances not statistically significant. The result shows that even though there is
no access inequity for the system as a whole with regard to the impact of catheterisation
capacity, inequity can still arise in situations where capacity is constrained and rationing
is likely. This may arise as a result of implicit triage rules applied by hospital staff and
clinicians to allocate limited capacity to maximise the overall survival of all patients,
as suggested by Hagen et al. (2015) in their theory model. Notably, Li et al. (2013)
found similar results on the use of cardiac revascularization procedures in the U.S. by
interacting hospital capacity with race, and concluded that racial disparities between

whites and blacks worsened in small-capacity hospitals.

7 Concluding Remarks

We jointly model the probabilities of admission to a catheterisation capable hospital,
receipt of ICA, and survival 30-days post discharge for AMI patients using a three-
equation recursive system of probit equations. We examine the direct and indirect
effects of SES, which we measure using remoteness of residence, private patient status,

and a small area index of socioeconomic status known as SEIFA.

The results suggest that in Australia, which has a universal health care system, ac-
cess to care by socioeconomically disadvantaged AMI patients is still lower than non-
disadvantaged patients. The lower access can adversely affect survival through its in-
direct effects, which are in addition to the direct effects of being in a disadvantaged
group. We further show that the level of available catheterisation capacity has little
effect on ICA access on average across all SES groups. However, when interacting with
SES variables, we find that in situations of limited capacity where rationing is likely,

ICA access by disadvantaged patients appears to be impacted more than that of non-
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disadvantaged patients. This finding suggests that access to care can be inequitable in
situations when the system is capacity-constrained, even though no access inequity is

found when capacity is non-constrained.

Our findings suggest that public policy to reduce inequality in health should not only
improve access difficulties faced by the disadvantaged, but also address the direct effects
of SES in order to more effectively bridge the outcomes between the disadvantaged and

advantaged groups.

This study has several limitations. The administrative data we use did not contain
any information on health habits and behaviours such as smoking, exercise and diets,
which are known to differ by SES and are highly relevant risk factors not only affects
cardiovascular disease risks but also outcomes following cardiovascular events. Our data
also did not contain precise timing of admission and ICA, as such we are unable to
determine the amount of elapsed time to ICA following admission. Lastly, we have no
information on ambulance wait times or travel delays before admission. This information
is particularly important for further investigations of the extent of access barriers facing

patients in remote areas in comparison to those living in cities.
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Appendix A Expressions for Total, Direct and Indirect Effects

Let i, vs;, ys; be three latent variables which are the underlying continuous variables
determining whether patient ¢ is, respectively, admitted to a catheterisation-capable
hospital, receiving ICA, or surviving 30 days post discharge.

Corresponding to yj; is the observed binary outcome:

)1 ity > 0
Yii 0 otherwise.

where j = 1,2, 3.

Let S; be a vector of SES variables, A; is a scalar denoting available catheterisation
capacity and Xy;, Xy;, X3; denote vectors of other explanatory variables. We specify a
recursive system of three probit equations as:

Yy = Sith + Xubh + e (A4)
Yo; = Y1y + Sibly + oA + A X SiA+ Xoi By + € (A5)
Y3 = Y2i0 + Sibls + X3:05 + €3, (A6)
where (€5, €2;, €3;) ~ N(0,Q),
L pi2 p13
Q= L pos
1

Without loss of generality, assume a given SES variable, s; € 5;, enters into all three
equations (A4)—(A6), respectively denoted by si;, so; and s3;. The total effect of s; on
survival ys; consists of the direct effect of s3; on the survival of patient i by eq. (A6)
and the indirect effect operating through sy;’s effect on receiving ICA (via eq. (A5)) and
s1;’s effect on admission to a catheterisation-capable hospital (via eq. (A4)). We derive
below the expression for the total effect.

0E (y3i|y2i, Y14, Si,Xu Ai) :8E (ysi|y2i7?/u, Si, Xi7Ai) + OE (ygilyzi,y1i, Si, Xi, Ai)

0s; 0s3; 089;
8E % [ iaSiaX’iaAi
n (Ysily2i, 11 ) (A7)
0s1;
0P (y3i = yoi, y1i, Siy Xy Ai) | OP (y3i = |y, yui, i, Xi, As)
= +
853@' 882@
opP (y3i = 1|y2iay1i78iaXi7Ai)
+ )
aSh‘

37



where P(-) denotes the probability of an event.

The right-hand side of the above expression for sj;,7 = 1,2,3, can be evaluated as
follows:

oP (y3z’ = 1|y2i,y1i, Si;Xz'>Ai) :aP (y3i =1Lyy=1y,= 1‘y2i7y1i75i>XiaAz’)
&Sﬁ 8sji
+3P (y3i =1y =0,y1 = 1|y2iay1i7 Sz‘,Xi,Az‘)
(‘33]»,-
+3P (ysi = 1,920 = 1, y1: = O|yas, y1i, Si, Xiy, Ai)
5’3]-1-
+8P (ysi = 1,y20 = 0,y1; = 0|yas, y1i, Si, Xiy Ai)
8sji

We next evaluate the right-hand side of the above expression terms by terms:

OP (y3i = 1,y2i = 1, y1i = 1yai, y14, S, Xiy Aj)
8sjz-
O[P(d + Sif3 + X3:03,7 + Sibly + aA; + A; X S\ + Xo; 09, Si01 + X1:61, Q)]
(3sﬁ

oP (?J:si =1,y =0,y1;, = 1|y2i7y1i7 SiaXiaAi)
8s]~i
O[®(Si0s + Xs3:05, — (v + Siba + @A, + A; X S;A + X9:52), Si01 + X161, Q)]
8sj2-

OP (ysi = 1,y2i = 1,91, = O|yai, Y14, Si, X, As)
&sji
_O[®(0 + Sifs + X333, Sily + @A + A; X Sid + Xoiffa, —(Si01 + X1:61), Q)]
N 83]-2-

OP (y3i = 1,92 = 0,91, = Olyai, y1i, Si, Xi, A;)
(7sji
I[P (Si03 + X3:05, —(Sifa + aA; + A; x S;A + Xoif2), —(Si01 + X1:01), )]
88]’1‘
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The multivariate standard normal cumulative distribution function (cdf) is evaluated
using a numerical approach proposed by Genz (1992) and implemented by the command
omzMnor in the open-access R program OpenMz (Boker et al., 2011). In computing the
total, direct and indirect marginal effects, for binary explanatory variables, the derivative
is calculated as finite difference, e.g. as follows:

o(.)

sji=1 7 CI)()

S]'iZO'

For continuous explanatory variables, the derivative is numerically approximated by
Richardson’s extrapolation (see e.g. Linfield and Penny, 1989; Fornberg and Sloan,
1994) implemented by the command grad in the open-access R program numDeriv.

If the errors are uncorrelated across equations (as in the case of NSTEMI patients),
in the above expressions reduces to an identity matrix and the computation is simplified
without having to resort to Genz (1992) approach.

The direct effect is the first item in RHS of (A7). Once the direct effect is obtained,
given that the total effect is the sum of the direct and indirect effects, we then obtain the
indirect effect as the difference between the total effect and direct effect. This applies
to both correlated and uncorrelated errors.
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Appendix B List of Coefficient Estimates

This Appendix contains the full listing of all coefficient estimates from estimating the
base model of three probit equations discussed in the text. The estimation was carried
out using the Stata command Conditional (recursive) mized-process (¢cmp) (Roodman,
2011). Table B1 contains coefficient estimates obtained for STEMI patients, while Ta-
ble B2 lists the estimates for NSTEMI patients.

Table B1: System Probit estimation: List of coefficient estimates, STEMI patients

Dependent variable

Admission to Survive 30 days
cath-capable hosp. Receive ICA post discharge
Coeff Coeff Coeff
Admission to cath-capable hospital - 4. 247%** -
(0.498)
Receive ICA - - 0.326
(0.279)
SEIFA (Ref: 1st quintile)
2nd quintile 0.098 0.635* 0.006
(0.202) (0.290) (0.067)
3rd quintile 0.101 0.527* 0.014
(0.256) (0.268) (0.064)
4th quintile 0.209 0.841** 0.037
(0.282) (0.309) (0.069)
5th quintile 0.202 0.884** -0.017
(0.247) (0.297) (0.076)
Private patient status 0.554*** 0.380** 0.314***
(0.168) (0.144) (0.058)
Remoteness (Ref: Metro)
Inner Regional -0.933*** - -0.054
(0.278) (0.071)
Outer Regional -1.383*** - -0.084
(0.269) (0.092)
Male 0.072 0.217*** 0.126***
(0.045) (0.041) (0.037)
Age group (Ref: 44 or below)
Age 45-49 -0.210* -0.036 0.001
(0.092) (0.105) (0.109)
Age 50-54 -0.059 -0.006 0.068
(0.126) (0.097) (0.112)
Age 55-59 -0.060 -0.040 -0.007
(0.129) (0.096) (0.108)
Age 60-64 -0.1941 -0.260** -0.281*
(0.108) (0.093) (0.120)
Age 65-69 -0.150 -0.302*** -0.416***
(0.136) (0.089) (0.095)
Age 70-74 -0.450*** -0.331** -0.536***
(0.138) (0.108) (0.107)
Age 75-79 -0.600*** -0.688*** -0.714***
(0.117) (0.109) (0.129)
Age above 80 -1.059*** -1.369*** -0.887***
(0.136) (0.135) (0.156)

Continued on next page. . .
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... continued from previous page

Dependent variable

Admission to Survive 30 days
cath-capable hosp. Receive ICA post discharge
Exp(Coeff) Exp(Coeff) Exp(Coeff)
Charlson comorbidity (Ref: Charlson < 2)
Charlson = 2 -0.068 -0.535*** -0.427***
(0.066) (0.063) (0.041)
Charlson = 3 or above -0.185* -0.988*** -0.713***
(0.089) (0.087) (0.080)
Married 0.143*** 0.147*** 0.086*
(0.044) (0.035) (0.040)
Australian born -0.198* -0.155%** 0.014
(0.080) (0.043) (0.030)
Arrival by ambulance 0.225% -0.166* -0.338***
(0.126) (0.067) (0.039)
Financial year (Ref: 2011/12)
Year 2005,/06 0.052 0.164** -0.031
(0.082) (0.059) (0.052)
Year 2006,/07 0.095 0.298*** -0.006
(0.060) (0.071) (0.069)
Year 2007,/08 0.237*** 0.295%** -0.030
(0.074) (0.093) (0.058)
Year 2008,/09 0.145 0.370** -0.067
(0.130) (0.120) (0.066)
Year 2009/10 0.330** 0.447*** -0.071
(0.119) (0.099) (0.066)
Year 2010/11 0.384*** 0.552*** -0.081
(0.090) (0.096) (0.062)
Admitted to teaching hospital - 0.361** 0.006
(0.120) (0.056)
Admitted during weekend 0.003 -0.085 -
(0.037) (0.053)
Month of admission (Ref: Jan)
Feb 0.066 -0.044 -0.028
(0.098) (0.071) (0.079)
Mar -0.033 -0.030 0.009
(0.095) (0.072) (0.079)
Apr 0.007 -0.122 -0.143
(0.087) (0.076) (0.101)
May 0.053 -0.134f -0.128
(0.090) (0.077) (0.091)
Jun 0.021 -0.172*%* -0.111t
(0.094) (0.054) (0.061)
Jul -0.149 -0.263*** -0.080
(0.091) (0.063) (0.085)
Aug -0.079 -0.176* -0.106
(0.090) (0.079) (0.080)
Sep -0.018 -0.210** 0.022
(0.077) (0.066) (0.080)
Oct -0.087 -0.177* -0.049
(0.074) (0.079) (0.075)
Nov -0.075 -0.160* -0.006
(0.068) (0.078) (0.078)
Dec 0.031 -0.1751 0.008
(0.099) (0.102) (0.070)
Relative local prevalence of AMI -0.257** -0.011 -
(0.082) (0.057)
No. of public hospital within 10km 0.054* - -0.002
(0.025) (0.005)
Capacity (Ref: very low)
Low - 0.622** -
(0.203)
Medium - 0.623% -
(0.328)

Continued on next page. . .
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... continued from previous page

Dependent

variable

Admission to

Survive 30 days

cath-capable hosp. Receive ICA post discharge
Exp(Coeff) Exp(Coeff) Exp(Coeff)
High - 0.729* -
(0.351)
Capacityx SEIFA
Lowx 2nd quintile - -0.607** -
(0.198)
Lowx 3rd quintile - -0.552** -
(0.201)
Lowx 4th quintile - -0.688*** -
(0.209)
Lowx 5th quintile - -0.608** -
(0.222)
Med x 2nd quintile - -0.513 -
(0.317)
Med x 3rd quintile - -0.438 -
(0.281)
Medx 4th quintile - -0.630* -
(0.317)
Medx 5th quintile - -0.760* -
(0.326)
Highx 2nd quintile - -0.5711 -
(0.311)
Highx 3rd quintile - -0.5441 -
(0.320)
Highx 4th quintile - -0.795* -
(0.350)
Highx 5th quintile - -0.811* -
(0.336)
Capacity x Priv patient
LowXx Private - -0.083 -
(0.137)
Med x Private - 0.031 -
(0.160)
Highx Private - 0.142 -
(0.136)
Constant 1.742%** -3.760*** 1.674***
(0.320) (0.596) (0.222)
P12 -0.287
(0.250)
P13 0.061
(0.087)
p23 0.312*
(0.139)
13,468

Note: (1) System of equations estimated using Stata command cmp.

(2) Robust standard errors shown in parentheses are obtained via clustering by hospital.

(3) Estimates for p;; are not exponentiated.
(4) Significance levels:

t: 10%

*: 5%

*: 1%
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Table B2: System Probit estimation: List of coefficient estimates, NSTEMI patients

Dependent variable

Admission to Survive 30 days
cath-capable hosp.  Receive ICA post discharge
Coeff Coeff Coeff
Admission to cath-capable hospital - 3.023*** -
(0.239)
Receive ICA - - 0.745***
(0.037)
SEIFA (Ref: 1st quintile)
2nd quintile -0.115 0.408 -0.042
(0.227) (0.262) (0.049)
3rd quintile -0.016 0.393f 0.043
(0.277) (0.223) (0.048)
4th quintile -0.275 0.625* -0.045
(0.352) (0.262) (0.055)
5th quintile -0.280 0.625* -0.054
(0.309) (0.260) (0.061)
Private patient status 0.432** 0.470*** 0.029
(0.153) (0.117) (0.021)
Remoteness (Ref: Metro)
Inner Regional -0.905** - 0.017
(0.337) (0.036)
Outer Regional -1.328*** - 0.036
(0.289) (0.047)
Male 0.119*** 0.153*** -0.050**
(0.024) (0.021) (0.017)
Age group (Ref: 44 or below)
Age 45-49 -0.016 -0.011 -0.227
(0.085) (0.067) (0.194)
Age 50-54 -0.054 -0.019 -0.238
(0.085) (0.082) (0.147)
Age 55-59 -0.024 -0.107 -0.378*
(0.092) (0.072) (0.153)
Age 60-64 -0.055 -0.279*** -0.588***
(0.092) (0.080) (0.171)
Age 65-69 -0.185f -0.381*** -0.566***
(0.099) (0.078) (0.148)
Age 70-74 -0.324*** -0.534*** -0.639***
(0.096) (0.080) (0.172)
Age 75-79 -0.519*** -0.829*** -0.810***
(0.096) (0.085) (0.151)
Age above 80 -0.823*** -1.570*** -0.946***
(0.107) (0.075) (0.161)
Charlson comorbidity (Ref: Charlson < 2)
Charlson = 2 -0.003 -0.615%** -0.433***
(0.041) (0.030) (0.022)
Charlson = 3 or above -0.016 -0.951%** -0.733***
(0.059) (0.036) (0.039)
Married 0.083** 0.174%** 0.059**
(0.028) (0.017) (0.023)
Australian born -0.157* -0.047 -0.037
(0.063) (0.035) (0.026)
Arrival by ambulance 0.146 -0.443*** -0.182***
(0.123) (0.058) (0.024)
Financial year (Ref: 2011/12)
Year 2005/06 -0.026 0.069 -0.027
(0.084) (0.044) (0.048)
Year 2006/07 0.018 0.071 -0.020
(0.057) (0.055) (0.043)
Year 2007/08 0.017 0.083 0.015
(0.070) (0.053) (0.052)
Year 2008/09 -0.103 0.102f 0.020

Continued on next page. . .
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Dependent variable

Admission to Survive 30 days
cath-capable hosp.  Receive ICA post discharge
Coeff Coeff Coeff
(0.160) (0.062) (0.045)
Year 2009/10 0.063 0.146** 0.026
(0.107) (0.049) (0.046)
Year 2010/11 0.1467 0.098" -0.051
(0.079) (0.052) (0.062)
Admitted to teaching hospital - 0.142f -0.001
(0.073) (0.036)
Admitted during weekend 0.010 -0.073* -
(0.026) (0.032)
Month of admission (Ref: Jan)
Feb 0.082* 0.070* 0.090**
(0.039) (0.034) (0.035)
Mar 0.020 0.006 0.035
(0.047) (0.053) (0.034)
Apr -0.069 0.008 0.048
(0.046) (0.037) (0.040)
May -0.033 0.016 0.017
(0.050) (0.046) (0.040)
Jun -0.0861 0.010 0.012
(0.044) (0.036) (0.037)
Jul -0.049 -0.068* 0.039
(0.042) (0.034) (0.032)
Aug -0.037 -0.076 0.040
(0.049) (0.048) (0.041)
Sep -0.044 -0.049 0.034
(0.046) (0.046) (0.040)
Oct -0.092f 0.041 0.046
(0.047) (0.040) (0.040)
Nov -0.029 0.017 0.047
(0.041) (0.043) (0.048)
Dec -0.007 -0.067 0.140***
(0.040) (0.052) (0.043)
Relative local prevalence of AMI -0.036 -0.030 -
(0.052) (0.036)
No. of public hospital within 10km 0.074* - 0.009**
(0.030) (0.003)
Capacity (Ref: very low)
Low - 0.434* -
(0.173)
Medium - 0.5157 -
(0.288)
High - 0.485 -
(0.315)
Capacityx SEIFA
Lowx 2nd quintile - -0.304 -
(0.190)
Lowx 3rd quintile - -0.285* -
(0.139)
LowXx 4th quintile - -0.406* -
(0.178)
Lowx 5th quintile - -0.361* -
(0.178)
Med x 2nd quintile - -0.318 -
(0.264)
Med X 3rd quintile - -0.316 -
(0.224)
Med X 4th quintile - -0.521* -
(0.256)
Med x 5th quintile - -0.4671 -
(0.261)

Continued on next page. . .
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Dependent variable

Admission to Survive 30 days
cath-capable hosp.  Receive ICA post discharge
Coeff Coeff Coeff
Highx 2nd quintile - -0.213 -
(0.279)
Highx 3rd quintile - -0.388 -
(0.239)
Highx 4th quintile - -0.5421 -
(0.284)
Highx 5th quintile - -0.5367 -
(0.286)
Capacity x Priv patient
Lowx Private - -0.143* -
(0.068)
Med x Private - -0.132 -
(0.092)
Highx Private - -0.009 -
(0.119)
Constant 1.501*** -2.752%** 2.185%**
(0.326) (0.316) (0.191)
N 42,167

Note: (1) System of equations estimated using Stata command cmp.
(2) Robust standard errors shown in parentheses are obtained via clustering by hospital.
(3) Significance levels: f: 10% *: 5% **: 1% ***: 0.1%
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Appendix C Robustness Results

This Appendix contains results from our robustness checks described in Section 5 in the
main text. Table C1 and C2 report estimates of total, and direct and indirect effects of
SES variables obtained from the model with the least number of exclusion restrictions,
i.e., the just-identified probit model. Corresponding estimates from the linear probability
model are shown in Tables C3 and C4.

Model with least number of exclusion restrictions
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Table C1: Total effects of SES, just-identified probit model

Admit to
cath-capable Receive 30-day
hospital ICA Survival
Y1 p-val Y2 p-val Ys p-val
STEMI
Remoteness (v major cities)
Inner regional -0.136**  0.015  -0.107**  0.015 -0.030 0.126
(s.e.) (0.055) (0.044) (0.019)
Outer regional -0.253***  <0.001  -0.212*** <0.001  -0.052* 0.033
(s.e.) (0.074) (0.060) (0.024)
SEIFA quintile (v 1st)
2nd quintile 0.013 0.635 0.042f 0.075 0.006 0.762
(s.e.) (0.027) (0.024) (0.021)
3rd quintile 0.013 0.695 0.031 0.258 0.008 0.712
(s.e.) (0.034) (0.027) (0.021)
4th quintile 0.026 0.452 0.069* 0.047 0.020 0.323
(s.e.) (0.035) (0.035) (0.020)
5th quintile 0.026 0.411 0.067* 0.028 0.000 0.990
(s.e.) (0.031) (0.030) (0.024)
Private patient (v public) 0.063**  0.006 0.117*** <0.001 0.119*** <0.001
(s.e.) (0.023) (0.023) (0.015)
NSTEMI
Remoteness (v major cities)
Inner regional -0.219* 0.025  -0.088* 0.028 -0.019 0.216
(s.e.) (0.098) (0.040) (0.016)
Outer regional -0.362**  <0.001  -0.154*** <0.001 -0.031 0.136
(s.e.) (0.094) (0.041) (0.021)
SEIFA quintile (v 1st)
2nd quintile -0.021 0.613 0.040 0.137 -0.003 0.887
(s.e.) (0.041) (0.027) (0.018)
3rd quintile -0.003 0.954 0.035 0.253 0.022 0.204
(s.e.) (0.048) (0.030) (0.017)
4th quintile -0.052 0.451 0.039 0.336 -0.004 0.838
(s.e.) (0.069) (0.041) (0.019)
5th quintile -0.053 0.378 0.047 0.234 -0.005 0.826
(s.e.) (0.060) (0.040) (0.021)
Private patient (v public) 0.079* 0.015 0.132***  <0.001 0.044***  <0.001
(s.e.) (0.032) (0.028) (0.008)

Notes: Standard errors obtained via delta method.
Significance levels:  T: 10% *: 5% **: 1% ***: 0.1%
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Table C2: Direct and indirect effects of SES, just-identified probit model

Receive ICA (y2) Survival (y3)
Indirect (fr y1) Direct Indirect (fr y1 & y2) Direct
M.E. p-val M.E. p-val M.E. p-val M.E. p-val
STEMI
Remoteness (v major cities)
Inner regional -0.107* 0.015 - -0.011 0.387 -0.019 0.422
(se) (0.044) (0.013) (0.023)
Outer regional -0.212***  <0.001 - -0.022 0.360 -0.029 0.322
(se) (0.060) (0.025) (0.030)
SEIFA quintile (v 1st)
2nd quintile 0.009 0.624 0.034t 0.100 0.004 0.432 0.002 0.922
(s.e.) (0.018) (0.020) (0.005) (0.022)
3rd quintile 0.009 0.688 0.022 0.216 0.003 0.490 0.005 0.829
(se.) (0.023) (0.018) (0.004) (0.021)
4th quintile 0.019 0.430 0.050* 0.028 0.007 0.406 0.013 0.570
(se.) (0.024) (0.023) (0.008) (0.023)
5th quintile 0.019 0.372 0.048* 0.022 0.006 0.399 -0.006 0.800
(se.) (0.021) (0.021) (0.007) (0.025)
Private (v public) patient 0.047** 0.008 0.070*** < 0.001 0.012 0.326 0.107** < 0.001
(se) (0.018) (0.015) (0.012) (0.019)
NSTEMI
Remoteness (v major cities)
Inner regional -0.088* 0.028 - -0.024* 0.032 0.004 0.684
(se.) (0.040) (0.011) (0.011)
Outer regional -0.154***  <0.001 - -0.042%*** <0.001 0.010 0.472
(se.) (0.041) (0.011) (0.014)
SEIFA quintile (v 1st)
2nd quintile -0.010 0.628 0.050* 0.025 0.010 0.155 -0.013 0.373
(se) (0.020) (0.022) (0.007) (0.014)
3rd quintile -0.001 0.955 0.036% 0.077 0.009 0.275 0.013 0.386
(se) (0.023) (0.020) (0.008) (0.015)
4th quintile -0.025 0.470 0.064** 0.003 0.010 0.366 -0.014 0.392
(se) (0.035) (0.021) (0.011) (0.016)
5th quintile -0.028 0.410 0.075*** < 0.001 0.012 0.272 -0.017 0.356
(se) (0.034) (0.021) (0.011) (0.018)
Private (v public) patient 0.034* 0.018 0.097*** < 0.001 0.035*** < 0.001 0.009 0.187
(se) (0.015) (0.020) (0.007) (0.007)

Notes: Standard errors obtained via delta method.
Significance levels: 1 10%  *: 5% **: 1% ***: 0.1%
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Linear Probability Model

Table C3: Total effects of SES, linear probability model

Admit to
cath-capable Receive 30-day
hospital ICA Survival
Y1 p-val Yo p-val Y3 p-val
STEMI
Remoteness (v major cities)
Inner regional -0.196** 0.003 -0.155** 0.003 -0.026* 0.029
(s.e.) (0.066) (0.053) (0.012)
Outer regional -0.339***  <0.001 -0.269*** <0.001 -0.038* 0.017
(s.e.) (0.083) (0.076) (0.016)
SEIFA quintile (v 1st)
2nd quintile 0.015 0.705 0.116* 0.029 -0.012 0.404
(se.) (0.040) (0.053) (0.014)
3rd quintile 0.022 0.637 0.108f 0.062 -0.008 0.557
(se.) (0.047) (0.058) (0.014)
4th quintile 0.041 0.297 0.148* 0.023 -0.007 0.571
(s.e.) (0.039) (0.065) (0.013)
5th quintile 0.029 0.397 0.155* 0.025 -0.024 0.168
(se.) (0.034) (0.069) (0.017)
Private patient (v public) 0.064* 0.026 0.129***  <0.001 0.054***  <0.001
(s.e.) (0.029) (0.031) (0.008)
NSTEMI
Remoteness (v major cities)
Inner regional -0.274** 0.008 -0.094* 0.014 -0.004 0.522
(s.e.) (0.103) (0.038) (0.006)
Outer regional -0.429*** <0.001 -0.148*** <0.001 -0.002 0.814
(s.e.) (0.088) (0.039) (0.010)
SEIFA quintile (v 1st)
2nd quintile -0.028 0.614 0.050 0.198 -0.003 0.662
(s.e.) (0.055) (0.039) (0.008)
3rd quintile 0.003 0.960 0.052 0.149 0.008 0.266
(s.e.) (0.064) (0.036) (0.007)
4th quintile -0.044 0.567 0.082" 0.071 -0.003 0.688
(s.e.) (0.077) (0.045) (0.008)
5th quintile -0.038 0.526 0.093* 0.044 -0.003 0.775
(se.) (0.060) (0.046) (0.009)
Private patient (v public) 0.082* 0.025 0.138***  <0.001 0.012***  <0.001
(s.e.) (0.036) (0.023) (0.003)

Notes: Standard errors obtained via delta method.
Significance levels:  T: 10% *: 5% **: 1% ***: 0.1%
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Table C4: Direct and indirect effects of SES, linear probability model

Receive ICA (y2) Survival (y3)
Indirect (fr y1) Direct Indirect (fr y1 & y2) Direct
M.E. p-val M.E. p-val M.E. p-val M.E. p-val
STEMI
Remoteness (v major cities)
Inner regional -0.155** 0.003 - 0.031 0.404 -0.057 0.185
(s.e.) (0.053) (0.037) (0.043)
Outer regional -0.269***  <0.001 - 0.054 0.378 -0.092 0.184
(se) (0.076) (0.061) (0.069)
SEIFA quintile (v 1st)
2nd quintile 0.012 0.705 0.104f 0.051 -0.023 0.293 0.011 0.553
(se) (0.032) (0.054) (0.022) (0.019)
3rd quintile 0.018 0.637 0.091f 0.073 -0.022 0.321 0.013 0.459
(se) (0.037) (0.051) (0.022) (0.018)
4th quintile 0.033 0.287 0.116f 0.052 -0.030 0.258 0.023 0.285
(s.e) (0.031) (0.060) (0.026) (0.021)
5th quintile 0.023 0.391 0.132* 0.046 -0.031 0.250 0.007 0.725
(se) (0.027) (0.066) (0.027) (0.020)
Private (v public) patient 0.051* 0.036 0.079*** < 0.001 -0.026 0.343 0.080**  0.003
(se) (0.024) (0.021) (0.027) (0.027)
NSTEMI
Remoteness (v major cities)
Inner regional -0.094* 0.014 - -0.007* 0.016 0.003 0.544
(se) (0.038) (0.003) (0.005)
Outer regional -0.148***  <0.001 - -0.011*** <0.001 0.009 0.279
(se) (0.039) (0.003) (0.008)
SEIFA quintile (v 1st)
2nd quintile -0.010 0.614 0.059 0.143 0.004 0.204 -0.007 0.334
(se) (0.019) (0.040) (0.003) (0.007)
3rd quintile 0.001 0.960 0.051 0.172 0.004 0.151 0.004 0.576
(se) (0.022) (0.037) (0.003) (0.007)
4th quintile -0.015 0.567 0.097* 0.023 0.0061 0.080 -0.009 0.267
(se) (0.027) (0.043) (0.003) (0.008)
5th quintile -0.013 0.528 0.106* 0.017 0.007* 0.049 -0.009 0.284
(se) (0.021) (0.045) (0.003) (0.009)
Private (v public) patient 0.028* 0.030 0.110*** < 0.001 0.010*** < 0.001 0.001 0.639
(se) (0.013) (0.017) (0.002) (0.003)

Notes: Standard errors obtained via delta method.
Significance levels:  T: 10% *: 5% **: 1% ***: 0.1%
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