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Socioeconomic status and access to care in a universal health

care system: The case of acute myocardial infarction in Australia

Abstract

This paper examines the role of socioeconomic status (SES) in affecting access to care
and the survival of acute myocardial infarction (AMI) patients in Australia’s universal
health care system. We jointly model the probabilities of patients being admitted to
a catheterisation-capable hospital, receiving invasive coronary angiography (ICA), and
surviving 30 days post discharge as a recursive system of probit equations. We further
investigate the role of capacity and whether the access gap between SES groups widens
when capacity becomes limited.

Our study shows that SES plays a significant role in affecting the survival of AMI
patients, both directly and indirectly through healthcare access. We find that socioe-
conomically disadvantaged patients are less likely to gain access to crucial services like
catheterisation hospitals and ICA, which indirectly affects their survival probability in
addition to the adverse direct impact of SES. While healthcare capacity showed no over-
all effect on access, its interplay with SES exacerbates the access disparity in situations
of limited capacity. Our findings suggest that, to reduce inequality in health outcomes,
public health strategy needs to focus not only on enhancing access but also addressing
the direct consequences of SES.

JEL classification: I14; I18

Keywords : Socioeconomic status; Acute myocardial infarction; Coronary angiography;
Health care access; Capacity.



1 Introduction

Cardiovascular disease is one of several noncommunicable diseases that account for a

significant proportion of premature deaths across all countries and socioeconomic groups

(Sacco et al., 2016; Stringhini et al., 2017). Although overall cardiovascular care is

improving in most countries, evidence suggests that the advance favours individuals in

the affluent group, which can widen the gap in health inequality over time (Bajekal

et al., 2013; Schultz et al., 2018). Practitioners have highlighted the importance of

public health strategies to reduce the disparities in prevention, disease risks, access

to medication and specialised care, and to address the complex relationship between

socioeconomic disadvantages and poor cardiovascular disease outcomes. Socioeconomic

status (SES) can affect access to care, which in turn impinges on outcomes. It also

has a direct bearing on poor outcomes because of lack of education and low awareness

(Cutler and Lleras-Muney, 2010). An understanding of the relative importance of direct

and indirect effects of SES is paramount to the formulation of an effective and targeted

public health response.

We examine the role of SES in the context of Australia’s universal health care system un-

der which equity in access to care has been a stated policy priority. We ask whether SES

affects acute myocardial infarction (AMI, or heart attack) patients’ access to invasive

coronary angiography (ICA) and subsequent survival. We measure SES in three ways:

(i) remoteness of residence; (ii) Socio-Economic Indexes for Areas (SEIFA), a small-area

based measure of neighborhood socioeconomic status published by the Australian Bu-

reau of Statistics (ABS), see ABS (2013); (iii) private patient status, an indicator of

whether the individual patient was admitted as a private or public patient.

We use three distinct measures of SES to capture the multifaceted nature of SES, which

relates to a complex array of factors reflecting the social and economic standings of

individuals. By using these three measures, we aim to present a comprehensive and

nuanced picture of how different components of SES may relate to access to care and
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the survival of AMI patients in Australia.

These three measures are related and complementary to one another1. Remoteness cap-

tures the geographic dimension of SES, which is particularly relevant Australia’s vast

geography and significant access disparities between rural and urban regions. Never-

theless, it does not directly measure individual or household socio-economic standings.

SEIFA, on the other hand, is a well-established, comprehensive, and nationally recog-

nized measure of area-level SES that considers a broad range of indicators (income,

education, employment, etc.). However, being an area-level measure, SEIFA may not

perfectly represent the SES of individual residents. By contrast, private patient sta-

tus provides insight into individuals ability and choice to access private healthcare. It is

known to be highly correlated with income and wealth in the context of Australia’s mixed

public-private insurance system because the taxation provision and premium subsidy in

relation to private health insurance have provided strong financial incentives for high-

income earners to purchase private health insurance (Palangkaraya and Yong, 2005).

AMI is a life-threatening emergency condition for which immediate care is required.

Current best-practice guidelines suggest that the diagnosis and management of AMI

should begin immediately at the point of first medical contact (Ibanez et al., 2018). ICA

is a key diagnostic procedure to assess the extent of artery blockage in order to prescribe

appropriate management strategies for AMI. The procedure involves the insertion of a

tube (catheter) into a large arterial blood vessel and the use of a special dye and x-rays

to examine blood flows through the coronary arteries. It is widely accepted that, for

patients with more urgent types of AMI, ICA should be undertaken within 90 minutes

and typically no more than 24 hours upon admission (Brodie et al., 2010; Sanz-Sanchez

and G.G. Stefanini, 2022). For all AMI patients, timely ICA is critical for patient

1A correlation analysis using Goodman and Kruskal’s γ between pairs of measures indicates that
SEIFA is moderately correlated with remoteness of residence (γ = 0.45) and private patient status
(γ = 0.29), while remoteness of residence and private patient status are weakly correlated (γ = 0.01).
The analysis demonstrates that, while these measures are related, they are not perfectly collinear and
thus likely capture different dimensions of SES. The moderate to weak correlations supports our decision
to include all three in our analysis, as they each provide unique information about SES.
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wellbeing and has a significant effect on survival (Wright et al., 2011).

ICA takes place in a catheterisation laboratory, a purpose-built facility in which a range

of diagnostic and interventional cardiac procedures are performed, including ICA, per-

cutaneous coronary intervention or stenting, pacemaker implants and replacements, etc.

We estimate a recursive system of three probit equations that model the probability

of an AMI patient: (i) getting admitted to a hospital capable of performing ICA, (ii)

receiving ICA, and (iii) surviving post discharge for at least 30 days. By estimating

a recursive system, we are able to decompose the total effects into direct and indirect

effects of SES on mortality outcomes. The indirect effects are via access to hospitals

with proper facilities and receiving the appropriate treatment after admission. These

are in contrast to the direct effects which affect survival due to differences in SES.

We further investigate the role of short term capacity of hospitals to deliver ICA. For

patients admitted to a particular hospital, due to the urgent nature of AMI, the short-

term capacity of the hospital to deliver ICA on admission is an important consideration.

We investigate the interactions of SES with the short-term capacity of the admitting

hospital on the day of admission. The interaction effects enable us to examine whether

access to ICA differs between SES groups when capacity is low and rationing may become

necessary.

We find that SES has large direct effects on access and survival of AMI patients and in

some instances the inequity in access adversely affects the survival of the disadvantaged.

We further find that the interactions of SES and capacity indicate that inequity in access

worsens when capacity is limited and rationing may be necessary.

We contribute to the literature by proposing a recursive system of probit equations to

disentangle the direct and indirect effects of SES; in addition we examine the interaction

effects of SES with short-term capacity, an issue that has yet to receive attention in the

literature. Our focus on direct and indirect effects of SES is similar in spirit to Hagen et
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al. (2015), although our approach is different. Specifically, Hagen et al. (2015) estimate

systems of independent linear equations and apply path analysis to identify the direct

and indirect effects, whereas we rely on the recursive structure of our model.

Related Literature

It is well known that lower SES is associated with poorer health and higher disease risks

(Braveman, et al., 2011; Matetic et al., 2020; Lago-Peñas et al., 2021). In a review of 47

studies on OECD countries, Lago-Peñas et al. (2021) conclude that low SES increases

the risk of developing cardiovascular and other non-communicable diseases. Whether the

poorer health is translated into greater health care use is uncertain, and much depends

on the nature of care and the social support and health systems under which health care

is accessed (Yong and Yang, 2021). In terms of mortality outcomes, Stringhini et al.

(2017) report that, in a multicohort study of 1.7 million individuals followed up for an

average of 13 years, lower SES individuals generally have higher mortality risks and this

finding holds across countries and health systems. However, it is unclear whether the

difference in mortality is due to lower SES individuals having poorer health or poorer

access to care. On the latter, some recent evidence suggests that the increasing use of

financial incentives in health care provision of care may have exacerbated the disparity

in access between SES groups (Beckert and Kelly, 2021; Milcent and Zbiri, 2022).

Specific to coronary heart disease, there is a large literature on the role of SES and how

it affects disease risk, access and outcomes. It is generally agreed that socioeconomically

disadvantaged individuals tend to have higher coronary heart disease risks (Paige et al.,

2018) and lower access to care, including access to ICA and revascularisation (Pilote

et al., 2003; Hetemaa et al., 2006; Sulo et al., 2016; Schröder et al., 2016; De Luca et

al. 2016; Matetic et al., 2020). Several studies also report differential access to newer

treatment options in favour of high SES patients (Korda et al., 2011; Yong et al., 2014).

A natural question that arises is whether the lower access by SES disadvantaged patients
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results in worse mortality outcomes. Several studies show that the differential access to

care across SES groups has negligible or no effects on survival (Gnavi et al. 2014; Hagen

et al., 2015; Biswas et al., 2019; Christensen et al., 2020). However, other studies have

found a significant relationship between lower SES and higher mortality risks (Cafagna

and Seghieri, 2017; Bergström et al., 2015; Stringhini et al., 2017; Matetic et al., 2020).

Generally, in countries with strong universal health care and social protection systems,

such as Sweden and Norway, SES was found to have no impact on survival. In contrast,

in countries without universal health insurance such as the United States, SES tends to

affect both access and survival. However, with the exception of Hagen et al. (2015), none

of these studies have attempted to separate the indirect and direct effects of SES. We

contribute to this literature by showing that SES plays both a direct and indirect role in

affecting survival. Separating direct and indirect effects may be helpful in reconciling the

mixed findings in previous studies. Our study also adds to the literature by considering

how SES interacts with short-term capacity of hospitals to affect access to care.

2 Empirical Model

We distinguish between two types of AMI, ST-elevation myocardial infarctions (STEMI)

and Non-ST-elevation myocardial infarctions (NSTEMI). Although under current best-

practice guidelines, both types of AMI patients should receive ICA as soon as possible,

they differ in urgency (Wright et al., 2011) and, as will be shown below, in patient char-

acteristics. These differences have implications on the treatment options and survival,

and more importantly, on how the availability of short-term capacity affects access and

subsequent survival.

For each type of AMI, we implement a recursive system of three probit equations with

dependent variables (y1i, y2i, y3i), which respectively denote the observed binary outcome

of whether patient i: (i) is admitted to a catheterisation capable hospital, (ii) receives

ICA, and (iii) survives 30 days post discharge. Underlying each of the binary outcomes
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is a latent index such that:2

yji =

{
1 if y∗ji > 0;

0 otherwise.

where j = 1, 2, 3. For each patient i, let Si denote a vector of SES variables, Xji denote

a vector of personal characteristics, and Ai is a scalar denoting the available capacity

on admission. The latent indices are related to the observed covariates as follows:

y∗1i = Siθ1 +X1iβ1 + ε1i (1)

y∗2i = y1iγ + Siθ2 + αAi + (Ai × Si)λ+X2iβ2 + ε2i (2)

y∗3i = y2iδ + Siθ3 +X3iβ3 + ε3i (3)

where the error terms, (ε1i, ε2i, ε3i), are assumed to follow a trivariate normal distribution

N(0,Ω) where

Ω =

1 ρ12 ρ13

1 ρ23

1

 ,
and ρjk are parameters capturing the cross-equation correlation. We will test the joint

significance of ρjk using a Wald test to determine our preferred model. We refer to

(1)–(3) above as respectively the hospital, ICA and survival equations. The ICA equa-

tion includes an interaction term of available capacity and SES, thus allowing for the

possibility that capacity constraints may have differential impact on the probability of

receiving ICA for different SES groups.

In this specification, SES affects admission to a catheterisation-capable hospital, ICA

and survival, and in the latter two equations, directly and indirectly. In the ICA equa-

tion, SES directly affects ICA via the parameter θ2, and indirectly via γ through the

hospital equation by affecting admission to catheterisation-capable hospital; Likewise,

in the survival equation, SES affects survival directly via θ3, and indirectly via the

2It should be pointed out that we adopt the latent index formulation to describe the unobserved
processes that determine the binary outcomes. We do not intend to rationalise this model in a utility-
maximising and user choice modelling framework. Given that AMI is an emergency condition and
patients are typically rushed to the nearest hospital, user preferences and choice are unlikely to be an
important consideration.
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ICA equation which in turn is affected directly and indirectly by SES via the hospital

equation.

Identification

The identification and estimation of recursive multiple-equation probit models with en-

dogenous dummy regressors have long been controversial. Heckman (1978) and Wilde

(2000) suggest that, to the extent that each equation contains at least one varying ex-

ogenous regressor, the system can be identified by the functional form and thus needs

no exclusion restrictions, provided there is sufficient variation in the data. However,

others have argued that such identification will be empirically fragile a fortiori due to

its heavy reliance on the particular model assumptions, including linear indexing in

the latent variables, threshold crossing rules for binary variables and a separable error

structure with a prescribed Gaussian distribution (e.g., Jones 2007, p.44).

In view of the ongoing controversy and to reinforce the identification, we rely on exclusion

restrictions on top of the functional form. Note that there are two endogenous variables

in the system: (i) whether a patient is admitted to a catheterisation capable hospital

(y1i) in the ICA equation (2), and (ii) whether a patient receives ICA (y2i) in the

survival equation (3). Note also that because of the recursive structure, parameters in

the hospital equation (1) are identified without requiring any restrictions. To identify

parameters in the ICA and survival equations, we need to impose at the minimum two

exclusion restrictions.

First, we specify that Remoteness enters hospital equation (1) but not the ICA equation

(2), to identify the coefficient γ in the ICA equation (2). The rationale is that patients

living in remote areas generally have to travel a longer distance to a hospital, and

there are far fewer catheterisation-capable hospitals outside the metropolitan areas in

Australia. However, once patients are admitted to a hospital, remoteness should not be

a factor that affects the decision of doctors and hospitals in determining whether the
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patient should receive ICA or not.

Second, the variable Catheterisation capacity and its interactions with the SEIFA index

and private patient status enter the ICA equation (2) but not the survival equation (3),

to identify the coefficient δ in the survival equation (3). We argue that available catheter-

isation capacity only affects survival via its effects on the probability of receiving ICA;

it should not have any direct effects on survival. This is a reasonable assumption since

catheterisation capacity is closely tied to the functioning of the catheterisation labora-

tory, a purpose-built facility for ICA and other catheterisation procedures. Its utilisation

has little, if any, correlation to the utilisation and functioning of other departments and

facilities in a hospital.

The above exclusion restrictions form the backbone of our identification strategy. In

addition, we also specify several other restrictions. A schematic presentation of all the

exclusion restrictions is shown in Figure 1.

Figure 1: A schematic overview of exclusion restrictions

In particular, based on the evidence that the effects of weekends on AMI mortality
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are indirect due to differences in access to care, weekends are found to have no direct

mortality effects (Kostis et al., 2007; Fiorentino et al., 2018), we include the Weekend

dummy in the hospital equation (1) and ICA equation (2), but not the survival equation

(3).

We further argue that the relative local prevalence of AMI during the admission week

affects survival through its effects on access to care, by itself the relative local prevalence

of AMI has no direct bearing on the survival of an AMI patient. On this basis, we specify

that the variable Relative local prevalence of AMI enters the hospital equation (1) and

ICA equation (2), but not the survival equation (3).

Another restriction we impose is to exclude the variable Number of public hospitals

within 10 kilometre radius from the ICA equation (2), on the basis that this variable

is an indicator of options available to patients in an AMI event—a greater number of

public hospitals in the area increases the likelihood of finding a catheterisation-capable

hospital nearby. This should have no bearing on whether the patient receives ICA or

not once the patient has been admitted to a hospital.

We note that the imposition of additional restrictions gives an over-identified system.

This means the validity of the additional exclusion restrictions can be formally tested.

In our empirical implementation we carry out several over-identification tests and report

the results in the Robustness section below.

Catheterisation capacity

To implement the empirical model, a key variable is the short-term available catheter-

isation capacity faced by a patient admitted on a given day. We do not observe this

information, but we observe the number of all catheterisation procedures performed

each day. This is a count variable capturing all catheterisation procedures, not just

ICA. A catheterisation laboratory typically also performs many other procedures such

as angioplasty, pacemaker implants and replacements, etc, in addition to ICA.
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Since we observe the number of catheterisation procedures performed at each hospital,

we regard the potential capacity of a hospital on any day as the maximum the hospital

managed to perform in the past fortnight.3 AMI is an emergency condition, patients

presented with AMI are generally given priority access to the catheterisation laboratory

over other patients. Therefore, for a given potential capacity, the available capacity

faced by a patient admitted in a given day is simply the difference between the potential

capacity and capacity already in use on the day. However, because the time of admission

is not observed in the data, the capacity in use is approximated using the average usage

of the day and the following day. This averaging is to allow for the possibility that the

patient could be admitted late in the day, and hence the following day’s capacity usage

would apply. This approximation may introduce measurement errors into the capacity

calculation, but since the occurrence and timing of AMI are random, we do not expect

such measurement errors to be correlated with other covariates in our model.

Formally, we let Ct be the count of catheterisation procedures performed on day t. The

short-term potential capacity of the admitting hospital at t is derived as the maximum

number of procedures a hospital ever delivered in the past fortnight:

Cmax
t = max(Ct, Ct−1, . . . , Ct−13).

The available capacity faced by patient i admitted at t is the difference between potential

capacity and capacity in use:

Ãi = Cmax
t − (Ct + Ct+1)/2,

where capacity in use at t is approximated as the average number of performed on days

t and t+ 1.

In the empirical implementation, we allow for nonlinear effects of available capacity by

3Instead of the past fortnight, we also use the maximum in the previous 7 and 30 days as robustness
checks. We do not find any notable differences in the results. A summary of our results is available
upon request.
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defining a categorical variable as follows:

Ai =


Very low if Ãi ≤ 1.5,

Low if 1.5 < Ãi ≤ 3.5,

Medium if 3.5 < Ãi ≤ 6.5,

High if Ãi > 6.5.

The cut-off values of 1.5, 3.5, and 6.5 correspond to the 25th, 50th, and 75th percentiles

of the sample values of Ãi.

Estimation

We estimate the system of three equations (1)–(3) using the user-written command

Conditional (recursive) mixed-process (cmp) in Stata (Roodman, 2011). The calcula-

tion of the cumulative joint normal distribution is via simulation using the Geweke-

Hajivassiliou-Keane (ghk) algorithm (Gates, 2006).

The quantities of interest are the total, direct and indirect marginal effects of a given

SES measure, si, on an outcome, for instance, survival (y3i). Assume si appears in all

three equations (1), (2) and (3), respectively denoted by s1i, s2i and s3i. The total effect

is given by

∂E (y3i|y2i, y1i, Si, Xi, Ai)

∂si
=
∂E (y3i|y2i, y1i, Si, Xi, Ai)

∂s3i

+
∂E (y3i|y2i, y1i, Si, Xi, Ai)

∂s2i

+
∂E (y3i|y2i, y1i, Si, Xi, Ai)

∂s1i

.

The direct effect therein is:

∂E (y3i|y2i, y1i, Si, Xi, Ai)

∂s3i

,

where Xi = X1i ∪ X2i ∪ X3i. We derive the algebraic expressions for total, direct and

indirect effects in Appendix A.

We are also interested in the marginal effects of available capacity, and its interactions

with SES. Note that available capacity only enters the ICA equation, there are only direct
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effects in relation to available capacity on this equation. For the survival equation, there

will only be indirect effects since available capacity is assumed to have no direct effect

on survival.

The partial effects of SES interacting with available capacity are of particular interest.

We are interested in comparing the partial effect of SES on ICA when available capacity

is low, i.e., when capacity could be constrained such that rationing is more likely to

occur, with situations when available capacity is high, i.e., when there is no capacity

constraint and rationing is unlikely. For a given SES measure, si, we denote ∆si|Ai
as

its partial effect at specific capacity level, a. That is,

∆si|Ai
≡ ∂E (y2i|y1i, Si, X2i, Ai)

∂si

∣∣∣∣
Ai=a

,

where a ranges from ‘very low’ to ‘high.’

3 Data

We made use of hospital administrative data from the state of Victoria, Australia. The

main data were extracted from two datasets—the Victorian Admitted Episodes Dataset

(VAED) and Victorian Emergency Minimum Dataset (VEMD). The data cover a seven-

year period, 2004/05–2010/11. The datasets were maintained by the Victorian Depart-

ment of Health and Human Services (DHHS), which manages public hospitals in the

state and also in charge of regulating private hospitals in matters such as patient safety.

The data were linked to the death registry records by DHHS to obtain the date of death

for deceased patients.

The population of our study consisted of all patients admitted to hospitals with a di-

agnosis of STEMI or NSTEMI who had no prior AMI admissions in the previous five

years. Patients experiencing prior AMI episodes in the previous five years were excluded

since their case complexity and survival rates are very different from those with no prior

AMI history. Identification of STEMI and NSTEMI was via the International Statisti-
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cal Classification of Diseases and Related Health Problems, Tenth Revision, Australian

Modification (ICD-10-AM), which is an expanded version of the World Health Organi-

zation’s ICD-10 codes. A hospital episode can include ED presentations and hospital

admissions associated with an AMI; episodes up to 24 hours between separations and

admissions were included in the same AMI hospital admission episode. For episodes

where multiple hospitals were involved, admission to catheterisation capable hospitals,

access to ICA, and the subsequent survival outcome were attributed to the hospital of

first admission. This is because, due to the urgent nature of AMI, the first few hours

are of critical importance for administering the appropriate treatment. This means hos-

pitals treating the patient in the first admission should be responsible for making the

right treatment decisions.

We further exclude patients who underwent ICA or PCI in the previous 12 months

(n = 9, 322), and patients younger than 35 or older than 90 (n = 4, 541). These patients

are excluded because they tend to have very different risk profile and case complexity,

as such their probabilities of ICA and survival are likely to be different from those of

other patients.

After applying the exclusion restrictions, we obtained a sample comprising 13,468

STEMI and 42,167 NSTEMI admissions over the sample period. The admission episodes

occurred in 144 hospitals, of which 47 were private hospitals. Not all hospitals were

catheterisation capable, which we define as hospitals that could perform at least 80

catheterisation procedures a year.4 Of the 144 hospitals in the sample, 32 were catheter-

isation capable, 19 of which were private hospitals. Note that an AMI patient may be

admitted in a non-catheterisation capable hospital (perhaps because it was the nearest

hospital), be assessed and stabilised as necessary and transferred to a catheterisation

capable hospital to undergo ICA and further treatment. In this case the access to ICA

and outcomes were attributed to the admitting hospital.

4We determine this criterion of 80 procedures a year by consulting with a senior cardiologist working
in a major public hospital in Victoria. The criterion translates to about 1.5 procedures per week, which
although arbitrary, is generally agreed as a credible indicator of catheterisation capability.

13



Most variables were constructed in a straightforward manner. For the three SES mea-

sures we use, (i) remoteness was classified into three categories (major cities, inner

regional and outer regional areas); (ii) SEIFA is a suite of composite indices published

by the ABS, which map to the Statistical Local Area (SLA) of a patient’s residence (a

SLA is a geographical classification unit defined by the ABS for the purpose of data

collection; see ABS, 2006). It comprises four different indices. The specific index used

here is the Index of Relative Socio-Economic Disadvantage. For the estimation, areas

were categorised into quintiles based on the index. Patients in the first quintile are the

most disadvantaged while those in the fifth are the most advantaged; and (iii) private

patient status, which is constructed as a binary variable indicating whether the patient

was admitted as a private or public patient.

A variable that requires further explanation is ‘Relative local prevalence of AMI during

admission week’, which was constructed to capture demand shocks in local areas. The

count of AMI for each week was obtained for each SLA in the state. Next, the week with

the highest count of AMI during the quarter of each year was identified. This represented

the busiest week for hospitals in the SLA in attending to AMI patients. For a patient

with AMI admitted during a specific week, we measured the relative prevalence of AMI

by taking the ratio of the total count of AMI in that week to the busiest week in the

quarter. A higher ratio indicates hospitals in the SLA were more likely to face capacity

pressure and thus less likely for a patient to get admitted to a catheterisation-capable

hospital.

4 Results

Summary statistics

We present some summary statistics about the sample in Table 1. For the outcomes of

interest, we see that most patients managed to get admitted to catheterisation capable
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hospitals—about 90 per cent for STEMI and 82 per cent for NSTEMI patients. The

rate of ICA differed between STEMI (74 per cent) and NSTEMI (40.4 per cent), likely a

reflection of the greater urgency of the former. The survival rate 30 days post discharge

was slightly lower for STEMI at 88.4 per cent, compared to 90.8 per cent for NSTEMI

patients.

In terms of demographic characteristics, there were more male than female patients,

STEMI patients were slightly younger than NSTEMI patients—the average age of pa-

tients was 66 years for STEMI and 73 years for NSTEMI. The majority of patients were

married, and Australian born. NSTEMI patients had more other complex medical con-

ditions than STEMI patients, as reflected in the higher average Charlson comorbidity

score of STEMI patients. Slightly above half of all patients arrived by ambulance, and

about a quarter of all patients were admitted during weekends. About 36 per cent of

STEMI patients were admitted to a teaching hospital, compared to about 29 per cent of

NSTEMI patients. For STEMI patients, about 22 per cent of admissions occurred when

the available catheterisation capacity was at very low level, 22 per cent at low, 30 per

cent at medium, and the remaining 27 per cent at high capacity level. The correspond-

ing percentages for NSTEMI patients were 28, 21, 27, and 23 per cent. Not surprisingly,

given the geographic concentration of Australia’s population, most patients (75 per cent

or more) resided in major cities, and only about 6 per cent resided in outer regional

or remote areas. A significant proportion of AMI patients were admitted as private

patients—about 35 per cent of STEMI patients and 31 per cent of NSTEMI patients.

Total, indirect and direct effects

We estimate the system of probit equations separately for STEMI and NSTEMI patients.

We first did the estimation without imposing any constraints on the cross-equation

correlation structure of the errors, and then test the correlation structure using the

Wald test. Note that the likelihood ratio test does not apply here due to the clustering
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Table 1: Summary statistics, STEMI and NSTEMI patients

STEMI NSTEMI
Mean s.d. Mean s.d.

Admitted to cath-capable hosp 0.895 0.306 0.819 0.385
ICA 0.740 0.439 0.404 0.491
Survived 30 days post discharge 0.884 0.320 0.908 0.289
Gender (Male = 1) 0.698 0.459 0.586 0.493
Age 66.297 13.639 72.997 12.566
Married 0.628 0.483 0.563 0.496
Australian born 0.591 0.492 0.559 0.496
Charlson comorbidity score 1.154 0.423 1.346 0.595
Arrival by ambulance 0.520 0.500 0.541 0.498
No. of hospitals within 10KM 4.598 5.009 4.911 5.165
Relative local prevalence of AMI 0.692 0.278 0.685 0.277
Teaching hospital 0.356 0.479 0.292 0.455
Admitted during weekends 0.264 0.441 0.253 0.434
Available cath capacity cat.

Very low 0.217 0.412 0.283 0.451
Low 0.218 0.413 0.212 0.408
Medium 0.297 0.457 0.272 0.445
High 0.268 0.443 0.233 0.423

SEIFA disadv quintile
1st 0.149 0.356 0.161 0.367
2nd 0.217 0.412 0.219 0.413
3rd 0.159 0.365 0.156 0.363
4th 0.287 0.452 0.272 0.445
5th 0.188 0.391 0.193 0.394

Remoteness
Major cities 0.750 0.433 0.761 0.426
Inner regional areas 0.192 0.394 0.181 0.385
Outer regional areas 0.059 0.235 0.057 0.232

Private patient 0.350 0.477 0.305 0.460

No. admissions 13,468 42,167
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of standard errors. The Wald test produced Chi-square test statistics (with 3 degrees of

freedom) of 18.63 (p < 0.001) and 3.99 (p = 0.263) for respectively STEMI and NSTEMI.

We therefore reject the null hypothesis of uncorrelated errors for STEMI but not for

NSTEMI patients. Based on the test results, we chose our preferred specification as

correlated errors for STEMI and uncorrelated errors, i.e., independent probit equations

for NSTEMI.

After estimating our preferred specifications, we obtain estimates of marginal effects of

SES on the probabilities of admission to catheterisation capable hospitals, ICA, and

30-day survival. Table 2 shows, for STEMI and NSTEMI patients, the estimated total

effects of the three SES variables. The total effects are decomposed into direct and

indirect effects in Table 3. A complete listing of coefficient estimates and standard

errors can be found in Appendix B.

The results in Table 2 show that remoteness has a significant and large effect on the

probability of patients being admitted to catheterisation capable hospitals. Compared

to patients in major cities, STEMI patients in inner regional areas were 13.6 percentage

points less likely to be admitted to a catheterisation capable hospital, while those in

outer regional areas were 25.3 percentage points less likely. The corresponding effects on

NSTEMI patients were even larger, at 21.9 and 36.2 percentage points for respectively

patients in inner regional and outer regional areas. Unlike remoteness, SEIFA has no sig-

nificant effects on the probability of being admitted to catheterisation capable hospitals

for either STEMI or NSTEMI patients. Compared to public patients, private patients

appeared to have a greater likelihood of gaining admission to a catheterisation-capable

hospital, the difference is 6.2 percentage points for STEMI and 7.9 percentage points for

NSTEMI patients.

For both STEMI and NSTEMI patients, the probability of receiving ICA is significantly

affected by remoteness and private patient status, and by SEIFA for STEMI but not

NSTEMI patients. Note that remoteness does not directly enter the ICA equation
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(2), and thus the estimated total effects consist entirely of the indirect effects via the

hospital equation (1). STEMI patients in inner regional and outer regional areas were

respectively 11.0 and 21.5 percentage points less likely to receive ICA than patients in

major cities. The corresponding probabilities for NSTEMI patients were 8.8 and 15.4

percentage points lower.

Table 2: Total effects of SES on STEMI and NSTEMI patients

Admit to
cath-capable Receive 30-day

hospital ICA Survival
y1 p-val y2 p-val y3 p-val

STEMI
Remoteness (v major cities)

Inner regional -0.136∗ 0.014 -0.110∗ 0.013 -0.015 0.115
(s.e.) (0.055) (0.044) (0.010)
Outer regional -0.253∗∗∗ <0.001 -0.215∗∗∗ <0.001 -0.026∗ 0.033
(s.e.) (0.073) (0.060) (0.012)

SEIFA quintile (v 1st)
2nd quintile 0.013 0.630 0.044† 0.054 0.004 0.655
(s.e.) (0.027) (0.023) (0.010)
3rd quintile 0.013 0.691 0.033 0.222 0.005 0.633
(s.e.) (0.033) (0.027) (0.010)
4th quintile 0.026 0.449 0.072∗ 0.041 0.011 0.211
(s.e.) (0.034) (0.035) (0.009)
5th quintile 0.025 0.412 0.072∗ 0.019 0.003 0.777
(s.e.) (0.031) (0.031) (0.011)

Private patient (v public) 0.062∗∗ 0.006 0.117∗∗∗ <0.001 0.055∗∗∗ <0.001
(s.e.) (0.023) (0.023) (0.006)

NSTEMI
Remoteness (v major cities)

Inner regional -0.219∗ 0.025 -0.088∗ 0.028 -0.003 0.573
(s.e.) (0.098) (0.040) (0.006)
Outer regional -0.362∗∗∗ <0.001 -0.154∗∗∗ <0.001 -0.004 0.601
(s.e.) (0.094) (0.041) (0.008)

SEIFA quintile (v 1st)
2nd quintile -0.021 0.613 0.038 0.153 -0.003 0.725
(s.e.) (0.041) (0.027) (0.008)
3rd quintile -0.003 0.954 0.034 0.265 0.009 0.199
(s.e.) (0.048) (0.030) (0.007)
4th quintile -0.052 0.451 0.036 0.370 -0.003 0.707
(s.e.) (0.069) (0.040) (0.008)
5th quintile -0.053 0.378 0.040 0.300 -0.004 0.678
(s.e.) (0.060) (0.039) (0.010)

Private patient (v public) 0.079∗ 0.015 0.131∗∗∗ <0.001 0.014∗∗∗ <0.001
(s.e.) (0.032) (0.028) (0.003)

Notes: Standard errors obtained via delta method.
Significance levels: †: 10% ∗: 5% ∗∗: 1% ∗∗∗: 0.1%
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Having private insurance not only increases the likelihood of geting admitted to

catheterisation-capable hospitals but also increases one’s likelihood of receiving ICA.

The advantage over public patients was respectively 11.7 and 13.1 percentage points

higher for private STEMI and NSTEMI patients. Being in higher (i.e., advantageous)

SEIFA quintiles appear to increase the likelihood of receiving ICA for STEMI patients

but no statistically significant difference was found for NSTEMI patients. STEMI pa-

tients in the 4th and 5th quintiles were on average 7.2 percentage points more likely to

receive ICA, compared to those in the lowest quintile.

The probability of survival 30 days post discharge was significantly affected by private

patient status for both STEMI and NSTEMI patients, and for STEMI patients, remote-

ness also played a role; the probability did not appear to vary significantly by SEIFA

quintile for both groups of patients. Compared to public patients, those admitted as

private patients have a higher probability of survival, by about 5.5 and 1.4 percentage

points for respectively STEMI and NSTEMI patients. STEMI patients in outer regional

areas were less likely to survive than patients in major cities—the probability is lower

by 2.6 percentage points. It is worth noting that the effect of remoteness on survival is

the combination of its direct and indirect effects, where the indirect effect is via the ICA

equation (2) whose remoteness effects are in turn indirect via the hospital equation (1).

The total effects shown in Table 2 are decomposed into direct and indirect effects in

Table 3. Note that the hospital equation is omitted here since there are no indirect

effects, all effects are by construction direct for this equation. Further, as noted before,

the effects of remoteness on receiving ICA are also entirely indirect via the hospital

equation.

The results show that, on the probability of receiving ICA, the effects are more direct

than indirect, whereas there does not appear to be any clear tendency on survival.

Notably the effects of private patient status on the probability of receiving ICA are

predominantly working through the direct effect. For STEMI patients, the direct effect
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was highly statistically significant and at 7.0 percentage points, compared to the indirect

effect of 4.8 percentage points. The contrast is even larger for NSTEMI patients the

direct effect was 9.7 percentage points, compared to the indirect effect of 3.4 percentage

points.

Compared to those in the first quintile of SEIFA, patients in the fourth and fifth quin-

tiles were more likely to receive ICA, with the direct effects dominating the indirect

effects. For STEMI patients, the direct effects were around 5 percentage points, while

the indirect effects were less than half of those of indirect effects and not statistically

significant. Similarly, for NSTEMI patients, the direct effects were similarly about 6–7

percentage points, and the indirect effects were not statistically significant.

We next turn to the estimated effects of the SES measures on survival. It is worth noting

that the indirect effects are the cumulative effects via admission to catheterisation hos-

pitals and receiving ICA. Private patient status appears to have a large and significant

direct effect on survival for STEMI patients, at 4.7 percentage points, compared to the

indirect effect of 0.8 percentage point which is statistically insignificant. For NSTEMI

patients, the direct effect of private patient status was small and not statistically signif-

icant, whereas the indirect effect was 1.0 percentage points and significant. Remoteness

appears to have a negative effect on the survival of AMI patients. For STEMI patients

neither its direct nor indirect effects are statistically significant, although their combined

effect, as shown in Table 2 above, is statistically significant. For NSTEMI patients, the

indirect effects of Remoteness are statistically significant, but not the direct effects. We

note that the magnitude of indirect effects are comparable for STEMI and NSTEMI

patients, suggesting that both groups faced similar access disadvantage, although only

the effects on NSTEMI patients are statistically significant. Lastly, the results show

that SEIFA did not appear to have any statistically significant direct or indirect effects

on survival for either STEMI and NSTEMI patients.

We next examine the estimated effects of available ICA capacity, as capacity constraints
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Table 3: Direct and indirect effects of SES, STEMI and NSTEMI patients

Receive ICA (y2) Survival (y3)
Indirect (fr y1) Direct Indirect (fr y1 & y2) Direct

M.E. p-val M.E. p-val M.E. p-val M.E. p-val
STEMI
Remoteness (v major cities)

Inner regional -0.110∗ 0.013 – -0.006 0.312 -0.009 0.464
(s.e.) (0.044) (0.006) (0.012)
Outer regional -0.215∗∗∗ <0.001 – -0.012 0.266 -0.014 0.390
(s.e.) (0.060) (0.011) (0.016)

SEIFA quintile (v 1st)
2nd quintile 0.009 0.618 0.035† 0.080 0.003 0.348 0.001 0.932
(s.e.) (0.018) (0.020) (0.004) (0.011)
3rd quintile 0.009 0.683 0.023 0.182 0.002 0.397 0.002 0.830
(s.e.) (0.023) (0.018) (0.003) (0.010)
4th quintile 0.020 0.427 0.052∗ 0.022 0.005 0.338 0.006 0.590
(s.e.) (0.025) (0.023) (0.006) (0.011)
5th quintile 0.019 0.374 0.053∗∗ 0.010 0.006 0.315 -0.003 0.827
(s.e.) (0.022) (0.021) (0.006) (0.012)

Private (v public) patient 0.048∗∗ 0.008 0.070∗∗∗ < 0.001 0.008 0.248 0.047∗∗∗ < 0.001
(s.e.) (0.018) (0.014) (0.007) (0.009)

NSTEMI
Remoteness (v major cities)

Inner regional -0.088∗ 0.028 – -0.006∗ 0.028 0.002 0.627
(s.e.) (0.040) (0.003) (0.005)
Outer regional -0.154∗∗∗ <0.001 – -0.009∗∗∗ <0.001 0.005 0.413
(s.e.) (0.041) (0.003) (0.006)

SEIFA quintile (v 1st)
2nd quintile -0.010 0.628 0.048∗ 0.028 0.003 0.117 -0.006 0.392
(s.e.) (0.020) (0.022) (0.002) (0.007)
3rd quintile -0.001 0.955 0.035† 0.083 0.003 0.228 0.006 0.360
(s.e.) (0.023) (0.020) (0.002) (0.007)
4th quintile -0.025 0.471 0.061∗∗ 0.006 0.003 0.279 -0.007 0.416
(s.e.) (0.034) (0.022) (0.003) (0.008)
5th quintile -0.027 0.410 0.068∗∗ 0.001 0.004 0.221 -0.008 0.388
(s.e.) (0.033) (0.021) (0.003) (0.009)

Private (v public) patient 0.034∗ 0.019 0.097∗∗∗ < 0.001 0.010∗∗∗ < 0.001 0.004 0.173
(s.e.) (0.015) (0.020) (0.002) (0.003)

Notes: Standard errors obtained via delta method.
Significance levels: †: 10% ∗: 5% ∗∗: 1% ∗∗∗: 0.1%
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could cause rationing which may adversely affect survival. Recall that capacity only

enters the ICA equation but not the other equations, and thus the estimated effects in

Table 4 show only direct effects on ICA and indirect effects on survival. The estimates

suggest that, as capacity rises with reference to the base category of ‘very low’ avail-

able capacity, both ICA and survival probabilities rise, although the increases are not

statistically significant.

Table 4: Marginal effects of available capacity, STEMI and NSTEMI

Receiving ICA (y2) Survival (y3)
Direct Indirect (from y2)

M.E. p-val M.E. p-val

STEMI
Available capacity (v Very low)

Low 0.011 0.466 0.001 0.529
(0.016) (0.001)

Medium 0.024 0.347 0.002 0.400
(0.025) (0.002)

High 0.032 0.232 0.003 0.326
(0.027) (0.003)

NSTEMI
Available capacity (v Very low)

Low 0.023 0.184 0.002 0.195
(0.017) (0.001)

Medium 0.028 0.333 0.002 0.358
(0.029) (0.002)

High 0.028 0.380 0.002 0.395
(0.032) (0.003)

Note: Standard errors obtained via delta method.

Although available capacity has no significant effects on ICA and survival, its interactions

with SES variables show a pattern that suggests inequity in access to ICA. Figures 2 and

3 show the partial effect estimates at different levels of available capacity of respectively

private patient status and SEIFA. In Figure 2, both Figures 2(a) and 2(b) show that

the probability of ICA access between private and public patients has a gap across all

capacity levels, and the access gap is larger for NSTEMI than STEMI patients, possibly

due to the more urgent nature of STEMI.

Figure 3 shows that ICA access varies between patients in different SEIFA quintiles
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at different capacity levels. When the available capacity is ‘very low’, the difference

in probability of receiving ICA between the first and fifth quintiles is about 0.2 for

STEMI and 0.15 for NSTEMI patients in favour of the advantaged group, and both

are statistically significant at 5% level. The gap narrows and becomes statistically

insignificant as capacity rises from ‘very low’ to ‘low’ and beyond. Importantly, the gaps

are narrower for patients in the second, third and fourth quintiles, and not statistically

different from zero, except in a couple of instances for patients in the third quintile.

(a) STEMI (b) NSTEMI

Figure 2: Partial effects (∆sj |Ai
), private patient status and available capacity on ICA

5 Robustness

We examine the robustness of our results from three different angles. We first estimate

an alternative specification with the least number of exclusion restrictions. Our second

robustness check is to exploit the over-identified specification of our base model to con-

duct a series of over-identification tests. The third is using an alternative functional

form specification in the form of the linear probability model (LPM). In all cases our

results are robust to the alternative specifications.
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(a) STEMI

(b) NSTEMI

Figure 3: Partial effects (∆sj |Ai
), SEIFA and available capacity on ICA
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Model with least number of exclusion restrictions

Recall that, to identify the recursive system of probit equations (1)–(3), we require at

the minimum two exclusion restrictions (on top of the functional form identification of

probit). That is, one variable in the hospital equation (1) is to be excluded from the

ICA equation (2), and another variable in the ICA equation (2) must not appear in the

survival equation (3). For this robustness check, we estimate just such a system using

respectively remoteness and catheterisation capacity as the two excluded variables. We

call this the just-identified probit model, although strictly speaking this ‘just-identified’

description is only true for linear models.

We present the results on total, direct and indirect effect estimates of SES on access to

catheterisation hospitals, receiving ICA, and eventual survival 30 days post discharge

in Appendix C (Table C1 and C2). From the results, we find no change in the sign or

statistical significance of any of the estimated effects. Moreover, very similar effect size

estimates are reported with respect to access to catheterisation hospitals and receiving

ICA. Some variation in effect size is found in relation to survival 30 days post discharge,

but their sign and statistical significance remain unchanged. Our overall conclusions

remain unchanged with the estimates from the just-identified model—private patient

status and remoteness affect access to care and have significant direct and indirect

effects on survival.

Over-identification tests

Since our base model is over-identified, i.e., having more exclusion restrictions than the

minimum required to identify the two endogenous variables, we can test the validity of

the additional exclusion restrictions. In particular, we test our base model against the

just-identified model discussed above through a series of over-identification tests. The

tests examine whether: (i) the Weekend dummy should enter the survival equation (3);

(ii) the Relative local prevalence of AMI should enter the survival equation (3); and (iii)
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the Number of public hospitals within 10 kilometer radius should enter the ICA equation

(2). For ease of reference, we denote the parameters of these variables as respectively

α1, α2 and α3.

Notwithstanding the extensive literature available on over-identification tests for linear

models, there is a dearth of econometric results in relation to tests specifically designed

for models with discrete outcomes. In a similar spirit to the Refutability test described

in Guevara (2018), we conduct a simple test to jointly test the three additional exclusion

restrictions as follows. In essence, we regard the just-identified model, which has the

least number of exclusion restrictions, as an augmented version of our base model, or put

differently, our base model is nested within the just-identified model. The null hypothesis

of the test is: H0 : α1 = 0, α2 = 0, α3 = 0. In addition to testing all three restrictions as

a joint test, we also test them in pairwise combinations and individually. For each test,

a different augmented model is separately estimated for STEMI and NSTEMI patients.

The Wald test is used due to the presence of clustered standard errors. The test results

are summarised in Table 5, which shows that the null hypothesis cannot be rejected

in any of the 14 tests. The test results lend support to the validity of the additional

exclusion restrictions imposed in our base model.

Linear probability model

Our final robustness check is to estimate a system of recursive linear equations in the form

of LPM. The specification is exactly the same as our base model except the functional

form is linear instead of probit. The advantages of LPM are its simplicity and that its

estimation does not require distributional assumptions. However, a key disadvantage of

LPM is it does not confine probabilities to within [0, 1]. After estimating the LPM model,

we compute the total, direct and indirect effects and report the results in Appendix C

(Tables C3 and C4). Comparing with our base model, LPM produces very similar results

on total, direct and indirect effects of SES, except that its effect sizes are generally a
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Table 5: Over-identification test results, STEMI and NSTEMI patients

STEMI NSTEMI

H0 : α1 = 0, α2 = 0, α3 = 0
χ2 3.42 1.31
p-value 0.331 0.728

H0 : α1 = 0, α2 = 0
χ2 0.68 1.15
p-value 0.713 0.564

H0 : α2 = 0, α3 = 0
χ2 2.12 0.68
p-value 0.346 0.712

H0 : α1 = 0, α3 = 0
χ2 3.37 0.96
p-value 0.185 0.619

H0 : α1 = 0
χ2 2.09 0.02
p-value 0.148 0.898

H0 : α2 = 0
χ2 0.02 0.45
p-value 0.895 0.501

H0 : α3 = 0
χ2 1.83 0.28
p-value 0.176 0.599
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little larger, resulting in slightly more estimated effects that are statistically significant.

The larger effect size is likely resulting from the LPM feature that does not restrict

the probability of modelled events to fall within 0 and 1. For this and other reasons,

LPM is becoming less frequently used for modelling discrete outcomes (Greene, 2012).

Nonetheless, for our purposes, the LPM results indicate that our results are robust to

the probit model assumptions.

6 Discussion

By estimating a recursive system of equations, we disentangle the direct and indirect

effects of SES on survival of AMI patients. The indirect effects work through access to

care, first through attending a catheterisation capable hospital and second by receiving

ICA. We do not consider these differences in access and outcomes to reflect personal

preferences, since in the context of AMI, care needs are urgent and the clinical guidelines

for ICA are well established. Personal preferences such as whether to receive care or

how much care is preferred have less relevance in this situation.

Our results underscore the importance of accounting for indirect effects in assessing the

impact of SES on outcomes of AMI patients. In many instances we see that indirect

effects have significant and material impacts on access and survival of AMI patients,

e.g., the indirect effects of remoteness on the likelihood of receiving ICA and survival

for NSTEMI patients.

Remoteness is found to be key in affecting admissions to catheterisation hospitals, which

have large indirect effects on access to ICA, and could in turn affect survival. The

result highlights the importance of getting to a catheterisation capable hospital for AMI

patients. Those in regional and remote areas are more likely to be admitted to non-

catheterisation hospitals and transferred later. They may have missed the ideal window

for ICA, which could have adversely affected survival.
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Private patient status turns out to be a highly relevant factor affecting ICA access and

survival for AMI patients. It has large direct effects on being admitted to catheterisation-

capable hospitals and receiving ICA, which in turn affects survival. This result likely

reflects the wider access by patients with private health insurance who can access both

private and public hospitals with catheterisation facilities. Wider access has in turn

enhanced the survival of private patients. This indirect effect of private patient status

on survival via wider access is relatively large for NSTEMI patients and statistically

significant. The direct effect of private patient status on survival is likely a reflection of

income or wealth, since wealthier individuals are overwhelmingly more likely to purchase

private health insurance in Australia (Palangkaraya and Yong, 2005).

Even though the total effects of SEIFA index quintiles are mostly statistically insignif-

icant, its direct effects on receiving ICA show that patients in the fifth quintile were

more likely to receive ICA than those in the first quintile for both STEMI and NSTEMI

patients. The difference in access by SEIFA, however, did not appear to impact the

survival of both STEMI and NSTEMI patients.

Taken together, our results show that both direct and indirect effects are important

in affecting the access to ICA and the subsequent survival of AMI patients. These

results suggest that while improving the access to ICA (and other cardiac procedures)

is important, to substantially improve the survival of disadvantaged AMI patients, the

direct effects of low SES (e.g., perhaps because of lack of education and low awareness)

must also be addressed. Several reasons may account for the higher survival probability

of high SES patients, including their generally better health, and their ability to comply

with treatment recommendations (Tang et al., 2013; Hagen et al., 2015).

It is noteworthy that although available catheterisation capacity has no significant effects

on access to ICA or subsequent survival, its interactions with SES show that the most

disadvantaged patients have lower access to ICA. In particular, its interaction with

SEIFA show that access to ICA tends to disadvantage patients in the lowest SEIFA
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quintile when available capacity is limited, i.e., when rationing may become necessary.

As capacity rises the access gap narrows and generally disappears. Also notable is that

the gaps between other SEIFA quintiles (versus the most advantaged) are not as wide and

in most instances not statistically significant. The result shows that even though there is

no access inequity for the system as a whole with regard to the impact of catheterisation

capacity, inequity can still arise in situations where capacity is constrained and rationing

is likely. This may arise as a result of implicit triage rules applied by hospital staff and

clinicians to allocate limited capacity to maximise the overall survival of all patients,

as suggested by Hagen et al. (2015) in their theory model. Notably, Li et al. (2013)

found similar results on the use of cardiac revascularization procedures in the U.S. by

interacting hospital capacity with race, and concluded that racial disparities between

whites and blacks worsened in small-capacity hospitals.

7 Concluding Remarks

We jointly model the probabilities of admission to a catheterisation capable hospital,

receipt of ICA, and survival 30-days post discharge for AMI patients using a three-

equation recursive system of probit equations. We examine the direct and indirect

effects of SES, which we measure using remoteness of residence, private patient status,

and a small area index of socioeconomic status known as SEIFA.

The results suggest that in Australia, which has a universal health care system, ac-

cess to care by socioeconomically disadvantaged AMI patients is still lower than non-

disadvantaged patients. The lower access can adversely affect survival through its in-

direct effects, which are in addition to the direct effects of being in a disadvantaged

group. We further show that the level of available catheterisation capacity has little

effect on ICA access on average across all SES groups. However, when interacting with

SES variables, we find that in situations of limited capacity where rationing is likely,

ICA access by disadvantaged patients appears to be impacted more than that of non-
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disadvantaged patients. This finding suggests that access to care can be inequitable in

situations when the system is capacity-constrained, even though no access inequity is

found when capacity is non-constrained.

Our findings suggest that public policy to reduce inequality in health should not only

improve access difficulties faced by the disadvantaged, but also address the direct effects

of SES in order to more effectively bridge the outcomes between the disadvantaged and

advantaged groups.

This study has several limitations. The administrative data we use did not contain

any information on health habits and behaviours such as smoking, exercise and diets,

which are known to differ by SES and are highly relevant risk factors not only affects

cardiovascular disease risks but also outcomes following cardiovascular events. Our data

also did not contain precise timing of admission and ICA, as such we are unable to

determine the amount of elapsed time to ICA following admission. Lastly, we have no

information on ambulance wait times or travel delays before admission. This information

is particularly important for further investigations of the extent of access barriers facing

patients in remote areas in comparison to those living in cities.
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Appendix A Expressions for Total, Direct and Indirect Effects

Let y∗1i, y
∗
2i, y

∗
3i be three latent variables which are the underlying continuous variables

determining whether patient i is, respectively, admitted to a catheterisation-capable
hospital, receiving ICA, or surviving 30 days post discharge.

Corresponding to y∗ji is the observed binary outcome:

yji =

{
1 if y∗ji > 0;

0 otherwise.

where j = 1, 2, 3.

Let Si be a vector of SES variables, Ai is a scalar denoting available catheterisation
capacity and X1i, X2i, X3i denote vectors of other explanatory variables. We specify a
recursive system of three probit equations as:

y∗1i = Siθ1 +X1iβ1 + ε1i (A4)

y∗2i = y1iγ + Siθ2 + αAi + Ai × Siλ+X2iβ2 + ε2i (A5)

y∗3i = y2iδ + Siθ3 +X3iβ3 + ε3i, (A6)

where (ε1i, ε2i, ε3i) ∼ N(0,Ω),

Ω =

1 ρ12 ρ13

1 ρ23

1


Without loss of generality, assume a given SES variable, si ∈ Si, enters into all three
equations (A4)–(A6), respectively denoted by s1i, s2i and s3i. The total effect of si on
survival y3i consists of the direct effect of s3i on the survival of patient i by eq. (A6)
and the indirect effect operating through s2i’s effect on receiving ICA (via eq. (A5)) and
s1i’s effect on admission to a catheterisation-capable hospital (via eq. (A4)). We derive
below the expression for the total effect.

∂E (y3i|y2i, y1i, Si, Xi, Ai)

∂si
=
∂E (y3i|y2i, y1i, Si, Xi, Ai)

∂s3i

+
∂E (y3i|y2i, y1i, Si, Xi, Ai)

∂s2i

+
∂E (y3i|y2i, y1i, Si, Xi, Ai)

∂s1i

(A7)

=
∂P (y3i = 1|y2i, y1i, Si, Xi, Ai)

∂s3i

+
∂P (y3i = 1|y2i, y1i, Si, Xi, Ai)

∂s2i

+
∂P (y3i = 1|y2i, y1i, Si, Xi, Ai)

∂s1i

,
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where P (·) denotes the probability of an event.

The right-hand side of the above expression for sji, j = 1, 2, 3, can be evaluated as
follows:

∂P (y3i = 1|y2i, y1i, Si, Xi, Ai)

∂sji
=
∂P (y3i = 1, y2i = 1, y1i = 1|y2i, y1i, Si, Xi, Ai)

∂sji

+
∂P (y3i = 1, y2i = 0, y1i = 1|y2i, y1i, Si, Xi, Ai)

∂sji

+
∂P (y3i = 1, y2i = 1, y1i = 0|y2i, y1i, Si, Xi, Ai)

∂sji

+
∂P (y3i = 1, y2i = 0, y1i = 0|y2i, y1i, Si, Xi, Ai)

∂sji
.

We next evaluate the right-hand side of the above expression terms by terms:

∂P (y3i = 1, y2i = 1, y1i = 1|y2i, y1i, Si, Xi, Ai)

∂sji

=
∂[Φ(δ + Siθ3 +X3iβ3, γ + Siθ2 + αAi + Ai × Siλ+X2iβ2, Siθ1 +X1iβ1,Ω)]

∂sji
.

∂P (y3i = 1, y2i = 0, y1i = 1|y2i, y1i, Si, Xi, Ai)

∂sji

=
∂[Φ(Siθ3 +X3iβ3,−(γ + Siθ2 + αAi + Ai × Siλ+X2iβ2), Siθ1 +X1iβ1,Ω)]

∂sji
.

∂P (y3i = 1, y2i = 1, y1i = 0|y2i, y1i, Si, Xi, Ai)

∂sji

=
∂[Φ(δ + Siθ3 +X3iβ3, Siθ2 + αAi + Ai × Siλ+X2iβ2,−(Siθ1 +X1iβ1),Ω)]

∂sji
.

∂P (y3i = 1, y2i = 0, y1i = 0|y2i, y1i, Si, Xi, Ai)

∂sji

=
∂[Φ(Siθ3 +X3iβ3,−(Siθ2 + αAi + Ai × Siλ+X2iβ2),−(Siθ1 +X1iβ1),Ω)]

∂sji
.
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The multivariate standard normal cumulative distribution function (cdf) is evaluated
using a numerical approach proposed by Genz (1992) and implemented by the command
omxMnor in the open-access R program OpenMx (Boker et al., 2011). In computing the
total, direct and indirect marginal effects, for binary explanatory variables, the derivative
is calculated as finite difference, e.g. as follows:

Φ(.)|sji=1 − Φ(.)|sji=0.

For continuous explanatory variables, the derivative is numerically approximated by
Richardson’s extrapolation (see e.g. Linfield and Penny, 1989; Fornberg and Sloan,
1994) implemented by the command grad in the open-access R program numDeriv.

If the errors are uncorrelated across equations (as in the case of NSTEMI patients), Ω
in the above expressions reduces to an identity matrix and the computation is simplified
without having to resort to Genz (1992) approach.

The direct effect is the first item in RHS of (A7). Once the direct effect is obtained,
given that the total effect is the sum of the direct and indirect effects, we then obtain the
indirect effect as the difference between the total effect and direct effect. This applies
to both correlated and uncorrelated errors.
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Appendix B List of Coefficient Estimates

This Appendix contains the full listing of all coefficient estimates from estimating the
base model of three probit equations discussed in the text. The estimation was carried
out using the Stata command Conditional (recursive) mixed-process (cmp) (Roodman,
2011). Table B1 contains coefficient estimates obtained for STEMI patients, while Ta-
ble B2 lists the estimates for NSTEMI patients.

Table B1: System Probit estimation: List of coefficient estimates, STEMI patients

D e p e n d e n t v a r i a b l e
Admission to Survive 30 days

cath-capable hosp. Receive ICA post discharge
Coeff Coeff Coeff

Admission to cath-capable hospital – 4.247∗∗∗ –
(0.498)

Receive ICA – – 0.326
(0.279)

SEIFA (Ref: 1st quintile)
2nd quintile 0.098 0.635∗ 0.006

(0.202) (0.290) (0.067)
3rd quintile 0.101 0.527∗ 0.014

(0.256) (0.268) (0.064)
4th quintile 0.209 0.841∗∗ 0.037

(0.282) (0.309) (0.069)
5th quintile 0.202 0.884∗∗ -0.017

(0.247) (0.297) (0.076)
Private patient status 0.554∗∗∗ 0.380∗∗ 0.314∗∗∗

(0.168) (0.144) (0.058)
Remoteness (Ref: Metro)

Inner Regional -0.933∗∗∗ – -0.054
(0.278) (0.071)

Outer Regional -1.383∗∗∗ – -0.084
(0.269) (0.092)

Male 0.072 0.217∗∗∗ 0.126∗∗∗

(0.045) (0.041) (0.037)
Age group (Ref: 44 or below)

Age 45-49 -0.210∗ -0.036 0.001
(0.092) (0.105) (0.109)

Age 50-54 -0.059 -0.006 0.068
(0.126) (0.097) (0.112)

Age 55-59 -0.060 -0.040 -0.007
(0.129) (0.096) (0.108)

Age 60-64 -0.194† -0.260∗∗ -0.281∗

(0.108) (0.093) (0.120)
Age 65-69 -0.150 -0.302∗∗∗ -0.416∗∗∗

(0.136) (0.089) (0.095)
Age 70-74 -0.450∗∗∗ -0.331∗∗ -0.536∗∗∗

(0.138) (0.108) (0.107)
Age 75-79 -0.600∗∗∗ -0.688∗∗∗ -0.714∗∗∗

(0.117) (0.109) (0.129)
Age above 80 -1.059∗∗∗ -1.369∗∗∗ -0.887∗∗∗

(0.136) (0.135) (0.156)
Continued on next page. . .
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. . . continued from previous page
D e p e n d e n t v a r i a b l e

Admission to Survive 30 days
cath-capable hosp. Receive ICA post discharge
Exp(Coeff) Exp(Coeff) Exp(Coeff)

Charlson comorbidity (Ref: Charlson < 2)
Charlson = 2 -0.068 -0.535∗∗∗ -0.427∗∗∗

(0.066) (0.063) (0.041)
Charlson = 3 or above -0.185∗ -0.988∗∗∗ -0.713∗∗∗

(0.089) (0.087) (0.080)
Married 0.143∗∗∗ 0.147∗∗∗ 0.086∗

(0.044) (0.035) (0.040)
Australian born -0.198∗ -0.155∗∗∗ 0.014

(0.080) (0.043) (0.030)
Arrival by ambulance 0.225† -0.166∗ -0.338∗∗∗

(0.126) (0.067) (0.039)
Financial year (Ref: 2011/12)

Year 2005/06 0.052 0.164∗∗ -0.031
(0.082) (0.059) (0.052)

Year 2006/07 0.095 0.298∗∗∗ -0.006
(0.060) (0.071) (0.069)

Year 2007/08 0.237∗∗∗ 0.295∗∗∗ -0.030
(0.074) (0.093) (0.058)

Year 2008/09 0.145 0.370∗∗ -0.067
(0.130) (0.120) (0.066)

Year 2009/10 0.330∗∗ 0.447∗∗∗ -0.071
(0.119) (0.099) (0.066)

Year 2010/11 0.384∗∗∗ 0.552∗∗∗ -0.081
(0.090) (0.096) (0.062)

Admitted to teaching hospital – 0.361∗∗ 0.006
(0.120) (0.056)

Admitted during weekend 0.003 -0.085 –
(0.037) (0.053)

Month of admission (Ref: Jan)
Feb 0.066 -0.044 -0.028

(0.098) (0.071) (0.079)
Mar -0.033 -0.030 0.009

(0.095) (0.072) (0.079)
Apr 0.007 -0.122 -0.143

(0.087) (0.076) (0.101)
May 0.053 -0.134† -0.128

(0.090) (0.077) (0.091)
Jun 0.021 -0.172∗∗ -0.111†

(0.094) (0.054) (0.061)
Jul -0.149 -0.263∗∗∗ -0.080

(0.091) (0.063) (0.085)
Aug -0.079 -0.176∗ -0.106

(0.090) (0.079) (0.080)
Sep -0.018 -0.210∗∗ 0.022

(0.077) (0.066) (0.080)
Oct -0.087 -0.177∗ -0.049

(0.074) (0.079) (0.075)
Nov -0.075 -0.160∗ -0.006

(0.068) (0.078) (0.078)
Dec 0.031 -0.175† 0.008

(0.099) (0.102) (0.070)
Relative local prevalence of AMI -0.257∗∗ -0.011 –

(0.082) (0.057)
No. of public hospital within 10km 0.054∗ – -0.002

(0.025) (0.005)
Capacity (Ref: very low)

Low – 0.622∗∗ –
(0.203)

Medium – 0.623† –
(0.328)

Continued on next page. . .
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. . . continued from previous page
D e p e n d e n t v a r i a b l e

Admission to Survive 30 days
cath-capable hosp. Receive ICA post discharge
Exp(Coeff) Exp(Coeff) Exp(Coeff)

High – 0.729∗ –
(0.351)

Capacity× SEIFA
Low× 2nd quintile – -0.607∗∗ –

(0.198)
Low× 3rd quintile – -0.552∗∗ –

(0.201)
Low× 4th quintile – -0.688∗∗∗ –

(0.209)
Low× 5th quintile – -0.608∗∗ –

(0.222)
Med× 2nd quintile – -0.513 –

(0.317)
Med× 3rd quintile – -0.438 –

(0.281)
Med× 4th quintile – -0.630∗ –

(0.317)
Med× 5th quintile – -0.760∗ –

(0.326)
High× 2nd quintile – -0.571† –

(0.311)
High× 3rd quintile – -0.544† –

(0.320)
High× 4th quintile – -0.795∗ –

(0.350)
High× 5th quintile – -0.811∗ –

(0.336)
Capacity× Priv patient

Low× Private – -0.083 –
(0.137)

Med× Private – 0.031 –
(0.160)

High× Private – 0.142 –
(0.136)

Constant 1.742∗∗∗ -3.760∗∗∗ 1.674∗∗∗

(0.320) (0.596) (0.222)
ρ12 -0.287

(0.250)
ρ13 0.061

(0.087)
ρ23 0.312∗

(0.139)
N 13,468

Note: (1) System of equations estimated using Stata command cmp.
(2) Robust standard errors shown in parentheses are obtained via clustering by hospital.
(3) Estimates for ρij are not exponentiated.
(4) Significance levels: †: 10% ∗: 5% ∗∗: 1% ∗∗∗: 0.1%
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Table B2: System Probit estimation: List of coefficient estimates, NSTEMI patients

D e p e n d e n t v a r i a b l e
Admission to Survive 30 days

cath-capable hosp. Receive ICA post discharge
Coeff Coeff Coeff

Admission to cath-capable hospital – 3.023∗∗∗ –
(0.239)

Receive ICA – – 0.745∗∗∗

(0.037)
SEIFA (Ref: 1st quintile)

2nd quintile -0.115 0.408 -0.042
(0.227) (0.262) (0.049)

3rd quintile -0.016 0.393† 0.043
(0.277) (0.223) (0.048)

4th quintile -0.275 0.625∗ -0.045
(0.352) (0.262) (0.055)

5th quintile -0.280 0.625∗ -0.054
(0.309) (0.260) (0.061)

Private patient status 0.432∗∗ 0.470∗∗∗ 0.029
(0.153) (0.117) (0.021)

Remoteness (Ref: Metro)
Inner Regional -0.905∗∗ – 0.017

(0.337) (0.036)
Outer Regional -1.328∗∗∗ – 0.036

(0.289) (0.047)
Male 0.119∗∗∗ 0.153∗∗∗ -0.050∗∗

(0.024) (0.021) (0.017)
Age group (Ref: 44 or below)

Age 45-49 -0.016 -0.011 -0.227
(0.085) (0.067) (0.194)

Age 50-54 -0.054 -0.019 -0.238
(0.085) (0.082) (0.147)

Age 55-59 -0.024 -0.107 -0.378∗

(0.092) (0.072) (0.153)
Age 60-64 -0.055 -0.279∗∗∗ -0.588∗∗∗

(0.092) (0.080) (0.171)
Age 65-69 -0.185† -0.381∗∗∗ -0.566∗∗∗

(0.099) (0.078) (0.148)
Age 70-74 -0.324∗∗∗ -0.534∗∗∗ -0.639∗∗∗

(0.096) (0.080) (0.172)
Age 75-79 -0.519∗∗∗ -0.829∗∗∗ -0.810∗∗∗

(0.096) (0.085) (0.151)
Age above 80 -0.823∗∗∗ -1.570∗∗∗ -0.946∗∗∗

(0.107) (0.075) (0.161)
Charlson comorbidity (Ref: Charlson < 2)

Charlson = 2 -0.003 -0.615∗∗∗ -0.433∗∗∗

(0.041) (0.030) (0.022)
Charlson = 3 or above -0.016 -0.951∗∗∗ -0.733∗∗∗

(0.059) (0.036) (0.039)
Married 0.083∗∗ 0.174∗∗∗ 0.059∗∗

(0.028) (0.017) (0.023)
Australian born -0.157∗ -0.047 -0.037

(0.063) (0.035) (0.026)
Arrival by ambulance 0.146 -0.443∗∗∗ -0.182∗∗∗

(0.123) (0.058) (0.024)
Financial year (Ref: 2011/12)

Year 2005/06 -0.026 0.069 -0.027
(0.084) (0.044) (0.048)

Year 2006/07 0.018 0.071 -0.020
(0.057) (0.055) (0.043)

Year 2007/08 0.017 0.083 0.015
(0.070) (0.053) (0.052)

Year 2008/09 -0.103 0.102† 0.020
Continued on next page. . .
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. . . continued from previous page
D e p e n d e n t v a r i a b l e

Admission to Survive 30 days
cath-capable hosp. Receive ICA post discharge

Coeff Coeff Coeff
(0.160) (0.062) (0.045)

Year 2009/10 0.063 0.146∗∗ 0.026
(0.107) (0.049) (0.046)

Year 2010/11 0.146† 0.098† -0.051
(0.079) (0.052) (0.062)

Admitted to teaching hospital – 0.142† -0.001
(0.073) (0.036)

Admitted during weekend 0.010 -0.073∗ –
(0.026) (0.032)

Month of admission (Ref: Jan)
Feb 0.082∗ 0.070∗ 0.090∗∗

(0.039) (0.034) (0.035)
Mar 0.020 0.006 0.035

(0.047) (0.053) (0.034)
Apr -0.069 0.008 0.048

(0.046) (0.037) (0.040)
May -0.033 0.016 0.017

(0.050) (0.046) (0.040)
Jun -0.086† 0.010 0.012

(0.044) (0.036) (0.037)
Jul -0.049 -0.068∗ 0.039

(0.042) (0.034) (0.032)
Aug -0.037 -0.076 0.040

(0.049) (0.048) (0.041)
Sep -0.044 -0.049 0.034

(0.046) (0.046) (0.040)
Oct -0.092† 0.041 0.046

(0.047) (0.040) (0.040)
Nov -0.029 0.017 0.047

(0.041) (0.043) (0.048)
Dec -0.007 -0.067 0.140∗∗∗

(0.040) (0.052) (0.043)
Relative local prevalence of AMI -0.036 -0.030 –

(0.052) (0.036)
No. of public hospital within 10km 0.074∗ – 0.009∗∗

(0.030) (0.003)
Capacity (Ref: very low)

Low – 0.434∗ –
(0.173)

Medium – 0.515† –
(0.288)

High – 0.485 –
(0.315)

Capacity× SEIFA
Low× 2nd quintile – -0.304 –

(0.190)
Low× 3rd quintile – -0.285∗ –

(0.139)
Low× 4th quintile – -0.406∗ –

(0.178)
Low× 5th quintile – -0.361∗ –

(0.178)
Med× 2nd quintile – -0.318 –

(0.264)
Med× 3rd quintile – -0.316 –

(0.224)
Med× 4th quintile – -0.521∗ –

(0.256)
Med× 5th quintile – -0.467† –

(0.261)
Continued on next page. . .
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. . . continued from previous page
D e p e n d e n t v a r i a b l e

Admission to Survive 30 days
cath-capable hosp. Receive ICA post discharge

Coeff Coeff Coeff
High× 2nd quintile – -0.213 –

(0.279)
High× 3rd quintile – -0.388 –

(0.239)
High× 4th quintile – -0.542† –

(0.284)
High× 5th quintile – -0.536† –

(0.286)
Capacity× Priv patient

Low× Private – -0.143∗ –
(0.068)

Med× Private – -0.132 –
(0.092)

High× Private – -0.009 –
(0.119)

Constant 1.501∗∗∗ -2.752∗∗∗ 2.185∗∗∗

(0.326) (0.316) (0.191)
N 42,167

Note: (1) System of equations estimated using Stata command cmp.
(2) Robust standard errors shown in parentheses are obtained via clustering by hospital.
(3) Significance levels: †: 10% ∗: 5% ∗∗: 1% ∗∗∗: 0.1%
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Appendix C Robustness Results

This Appendix contains results from our robustness checks described in Section 5 in the
main text. Table C1 and C2 report estimates of total, and direct and indirect effects of
SES variables obtained from the model with the least number of exclusion restrictions,
i.e., the just-identified probit model. Corresponding estimates from the linear probability
model are shown in Tables C3 and C4.

Model with least number of exclusion restrictions
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Table C1: Total effects of SES, just-identified probit model

Admit to
cath-capable Receive 30-day

hospital ICA Survival
y1 p-val y2 p-val y3 p-val

STEMI
Remoteness (v major cities)

Inner regional -0.136∗∗ 0.015 -0.107∗∗ 0.015 -0.030 0.126
(s.e.) (0.055) (0.044) (0.019)
Outer regional -0.253∗∗∗ <0.001 -0.212∗∗∗ <0.001 -0.052∗ 0.033
(s.e.) (0.074) (0.060) (0.024)

SEIFA quintile (v 1st)
2nd quintile 0.013 0.635 0.042† 0.075 0.006 0.762
(s.e.) (0.027) (0.024) (0.021)
3rd quintile 0.013 0.695 0.031 0.258 0.008 0.712
(s.e.) (0.034) (0.027) (0.021)
4th quintile 0.026 0.452 0.069∗ 0.047 0.020 0.323
(s.e.) (0.035) (0.035) (0.020)
5th quintile 0.026 0.411 0.067∗ 0.028 0.000 0.990
(s.e.) (0.031) (0.030) (0.024)

Private patient (v public) 0.063∗∗ 0.006 0.117∗∗∗ <0.001 0.119∗∗∗ <0.001
(s.e.) (0.023) (0.023) (0.015)

NSTEMI
Remoteness (v major cities)

Inner regional -0.219∗ 0.025 -0.088∗ 0.028 -0.019 0.216
(s.e.) (0.098) (0.040) (0.016)
Outer regional -0.362∗∗∗ <0.001 -0.154∗∗∗ <0.001 -0.031 0.136
(s.e.) (0.094) (0.041) (0.021)

SEIFA quintile (v 1st)
2nd quintile -0.021 0.613 0.040 0.137 -0.003 0.887
(s.e.) (0.041) (0.027) (0.018)
3rd quintile -0.003 0.954 0.035 0.253 0.022 0.204
(s.e.) (0.048) (0.030) (0.017)
4th quintile -0.052 0.451 0.039 0.336 -0.004 0.838
(s.e.) (0.069) (0.041) (0.019)
5th quintile -0.053 0.378 0.047 0.234 -0.005 0.826
(s.e.) (0.060) (0.040) (0.021)

Private patient (v public) 0.079∗ 0.015 0.132∗∗∗ <0.001 0.044∗∗∗ <0.001
(s.e.) (0.032) (0.028) (0.008)

Notes: Standard errors obtained via delta method.
Significance levels: †: 10% ∗: 5% ∗∗: 1% ∗∗∗: 0.1%
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Table C2: Direct and indirect effects of SES, just-identified probit model

Receive ICA (y2) Survival (y3)
Indirect (fr y1) Direct Indirect (fr y1 & y2) Direct

M.E. p-val M.E. p-val M.E. p-val M.E. p-val
STEMI
Remoteness (v major cities)

Inner regional -0.107∗ 0.015 – -0.011 0.387 -0.019 0.422
(s.e.) (0.044) (0.013) (0.023)
Outer regional -0.212∗∗∗ <0.001 – -0.022 0.360 -0.029 0.322
(s.e.) (0.060) (0.025) (0.030)

SEIFA quintile (v 1st)
2nd quintile 0.009 0.624 0.034† 0.100 0.004 0.432 0.002 0.922
(s.e.) (0.018) (0.020) (0.005) (0.022)
3rd quintile 0.009 0.688 0.022 0.216 0.003 0.490 0.005 0.829
(s.e.) (0.023) (0.018) (0.004) (0.021)
4th quintile 0.019 0.430 0.050∗ 0.028 0.007 0.406 0.013 0.570
(s.e.) (0.024) (0.023) (0.008) (0.023)
5th quintile 0.019 0.372 0.048∗ 0.022 0.006 0.399 -0.006 0.800
(s.e.) (0.021) (0.021) (0.007) (0.025)

Private (v public) patient 0.047∗∗ 0.008 0.070∗∗∗ < 0.001 0.012 0.326 0.107∗∗ < 0.001
(s.e.) (0.018) (0.015) (0.012) (0.019)

NSTEMI
Remoteness (v major cities)

Inner regional -0.088∗ 0.028 – -0.024∗ 0.032 0.004 0.684
(s.e.) (0.040) (0.011) (0.011)
Outer regional -0.154∗∗∗ <0.001 – -0.042∗∗∗ <0.001 0.010 0.472
(s.e.) (0.041) (0.011) (0.014)

SEIFA quintile (v 1st)
2nd quintile -0.010 0.628 0.050∗ 0.025 0.010 0.155 -0.013 0.373
(s.e.) (0.020) (0.022) (0.007) (0.014)
3rd quintile -0.001 0.955 0.036† 0.077 0.009 0.275 0.013 0.386
(s.e.) (0.023) (0.020) (0.008) (0.015)
4th quintile -0.025 0.470 0.064∗∗ 0.003 0.010 0.366 -0.014 0.392
(s.e.) (0.035) (0.021) (0.011) (0.016)
5th quintile -0.028 0.410 0.075∗∗∗ < 0.001 0.012 0.272 -0.017 0.356
(s.e.) (0.034) (0.021) (0.011) (0.018)

Private (v public) patient 0.034∗ 0.018 0.097∗∗∗ < 0.001 0.035∗∗∗ < 0.001 0.009 0.187
(s.e.) (0.015) (0.020) (0.007) (0.007)

Notes: Standard errors obtained via delta method.
Significance levels: †: 10% ∗: 5% ∗∗: 1% ∗∗∗: 0.1%

48



Linear Probability Model

Table C3: Total effects of SES, linear probability model

Admit to
cath-capable Receive 30-day

hospital ICA Survival
y1 p-val y2 p-val y3 p-val

STEMI
Remoteness (v major cities)

Inner regional -0.196∗∗ 0.003 -0.155∗∗ 0.003 -0.026∗ 0.029
(s.e.) (0.066) (0.053) (0.012)
Outer regional -0.339∗∗∗ <0.001 -0.269∗∗∗ <0.001 -0.038∗ 0.017
(s.e.) (0.083) (0.076) (0.016)

SEIFA quintile (v 1st)
2nd quintile 0.015 0.705 0.116∗ 0.029 -0.012 0.404
(s.e.) (0.040) (0.053) (0.014)
3rd quintile 0.022 0.637 0.108† 0.062 -0.008 0.557
(s.e.) (0.047) (0.058) (0.014)
4th quintile 0.041 0.297 0.148∗ 0.023 -0.007 0.571
(s.e.) (0.039) (0.065) (0.013)
5th quintile 0.029 0.397 0.155∗ 0.025 -0.024 0.168
(s.e.) (0.034) (0.069) (0.017)

Private patient (v public) 0.064∗ 0.026 0.129∗∗∗ <0.001 0.054∗∗∗ <0.001
(s.e.) (0.029) (0.031) (0.008)

NSTEMI
Remoteness (v major cities)

Inner regional -0.274∗∗ 0.008 -0.094∗ 0.014 -0.004 0.522
(s.e.) (0.103) (0.038) (0.006)
Outer regional -0.429∗∗∗ <0.001 -0.148∗∗∗ <0.001 -0.002 0.814
(s.e.) (0.088) (0.039) (0.010)

SEIFA quintile (v 1st)
2nd quintile -0.028 0.614 0.050 0.198 -0.003 0.662
(s.e.) (0.055) (0.039) (0.008)
3rd quintile 0.003 0.960 0.052 0.149 0.008 0.266
(s.e.) (0.064) (0.036) (0.007)
4th quintile -0.044 0.567 0.082† 0.071 -0.003 0.688
(s.e.) (0.077) (0.045) (0.008)
5th quintile -0.038 0.526 0.093∗ 0.044 -0.003 0.775
(s.e.) (0.060) (0.046) (0.009)

Private patient (v public) 0.082∗ 0.025 0.138∗∗∗ <0.001 0.012∗∗∗ <0.001
(s.e.) (0.036) (0.023) (0.003)

Notes: Standard errors obtained via delta method.
Significance levels: †: 10% ∗: 5% ∗∗: 1% ∗∗∗: 0.1%
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Table C4: Direct and indirect effects of SES, linear probability model

Receive ICA (y2) Survival (y3)
Indirect (fr y1) Direct Indirect (fr y1 & y2) Direct

M.E. p-val M.E. p-val M.E. p-val M.E. p-val
STEMI
Remoteness (v major cities)

Inner regional -0.155∗∗ 0.003 – 0.031 0.404 -0.057 0.185
(s.e.) (0.053) (0.037) (0.043)
Outer regional -0.269∗∗∗ <0.001 – 0.054 0.378 -0.092 0.184
(s.e.) (0.076) (0.061) (0.069)

SEIFA quintile (v 1st)
2nd quintile 0.012 0.705 0.104† 0.051 -0.023 0.293 0.011 0.553
(s.e.) (0.032) (0.054) (0.022) (0.019)
3rd quintile 0.018 0.637 0.091† 0.073 -0.022 0.321 0.013 0.459
(s.e.) (0.037) (0.051) (0.022) (0.018)
4th quintile 0.033 0.287 0.116† 0.052 -0.030 0.258 0.023 0.285
(s.e.) (0.031) (0.060) (0.026) (0.021)
5th quintile 0.023 0.391 0.132∗ 0.046 -0.031 0.250 0.007 0.725
(s.e.) (0.027) (0.066) (0.027) (0.020)

Private (v public) patient 0.051∗ 0.036 0.079∗∗∗ < 0.001 -0.026 0.343 0.080∗∗ 0.003
(s.e.) (0.024) (0.021) (0.027) (0.027)

NSTEMI
Remoteness (v major cities)

Inner regional -0.094∗ 0.014 – -0.007∗ 0.016 0.003 0.544
(s.e.) (0.038) (0.003) (0.005)
Outer regional -0.148∗∗∗ <0.001 – -0.011∗∗∗ <0.001 0.009 0.279
(s.e.) (0.039) (0.003) (0.008)

SEIFA quintile (v 1st)
2nd quintile -0.010 0.614 0.059 0.143 0.004 0.204 -0.007 0.334
(s.e.) (0.019) (0.040) (0.003) (0.007)
3rd quintile 0.001 0.960 0.051 0.172 0.004 0.151 0.004 0.576
(s.e.) (0.022) (0.037) (0.003) (0.007)
4th quintile -0.015 0.567 0.097∗ 0.023 0.006† 0.080 -0.009 0.267
(s.e.) (0.027) (0.043) (0.003) (0.008)
5th quintile -0.013 0.528 0.106∗ 0.017 0.007∗ 0.049 -0.009 0.284
(s.e.) (0.021) (0.045) (0.003) (0.009)

Private (v public) patient 0.028∗ 0.030 0.110∗∗∗ < 0.001 0.010∗∗∗ < 0.001 0.001 0.639
(s.e.) (0.013) (0.017) (0.002) (0.003)

Notes: Standard errors obtained via delta method.
Significance levels: †: 10% ∗: 5% ∗∗: 1% ∗∗∗: 0.1%
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