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Abstract 

We develop an empirical network model to study bilateral sovereign credit risk spillovers 

during the European debt crisis. We show that the spillover density is typically asymmetric 

with heavy tails. This confounds efforts to track time-variation in spillover activity using the 

mean-based summary statistics that are widespread in the literature. Density-based measures 

— specifically divergence criteria — yield stronger and timelier signals of changes in 

spillover activity than mean-based measures. This is particularly apparent for sovereign 

bailouts, which principally affect the tails of the spillover density. Consequently, density-

based measures provide valuable additional information about changes in the credit risk 

environment. 

 

JEL classification: C58, F45, G15, H63 
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I. Introduction

The credit risk associated with sovereign debt issued by developed countries has tradition-

ally been negligible, so much so that government bond yields are often used to approximate

risk-free interest rates for asset pricing models, among other applications. Although sev-

eral sovereign defaults and bailouts occurred in the decades prior to the Great Recession

of the late 2000s, they were concentrated in emerging markets, including Argentina, Mex-

ico and Russia. This changed with the Great Recession, which resulted in several Euro-

pean sovereign bailouts and a widespread deterioration in the credit risk of many advanced

economies, as exemplified by Standard and Poor’s downgrade of US federal government

debt in 2011. The clustering of sovereign defaults, bailouts and downgrades in both space

and time has been a distinctive feature of recent times and has fueled interest in the study

of credit risk transmission among sovereigns. Our goal is to model the network of bilateral

credit risk spillovers among a group of European sovereigns, to characterise the density of

sovereign credit risk spillovers and to study the evolution of the spillover density over time.

In principle, measures of sovereign credit risk — both bond yield spreads and credit

default swap (CDS) spreads1 — should rapidly adjust to reflect idiosyncratic variations in

default risk. In practice, however, sovereign credit spreads display marked comovement

across countries. It is well documented that a portion of this comovement derives from the

dependence of sovereign credit spreads on common factors which capture broad features of

the market for sovereign debt, such as marketwide liquidity and the aggregate risk appetite

of investors. Using data up to 2010, Longstaff, Pan, Pedersen, and Singleton (2011) show

that a single principal component accounts for up to 64% of variation in sovereign CDS

spreads. Furthermore, the authors demonstrate that the effect of domestic macroeconomic

conditions on the sovereign CDS spread is typically weaker than that of the VIX and of

1A sovereign CDS operates like an insurance contract in which a bondholder pays a premium to transfer

the default risk of the bond onto the protection seller over a given time-frame. Due both to its liquidity

and to the engagement of many well-informed institutional investors, the CDS market is believed to be the

main forum for credit risk price discovery (Blanco, Brennan, and Marsh, 2005).
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US stock and high yield markets. These important features of the sovereign credit spread

data have also been documented in related research by Pan and Singleton (2008), Ang and

Longstaff (2013) and Jeanneret (2015), among others.

In addition to the factor structure, a large literature holds that spillovers among sovereign

bond markets may contribute to the observed comovement of sovereign credit spreads (e.g.

Gande and Parsley, 2005; Alter and Schüler, 2012; Alter and Beyer, 2014). These spillovers

may be driven in part by the portfolio management of fixed income investors. This effect is

likely to be particularly strong in the Euro area, where the economic and monetary union

encourages greater intra-European diversification among European investors (De Santis and

Gérard, 2009) and where banks have historically taken substantial sovereign debt positions

in the hope of profiting from the convergence of peripheral bond yields to the European

core (Acharya and Steffen, 2015). The broader institutional design of the EU may also

contribute to sovereign credit risk comovements. Bolton and Jeanne (2011) demonstrate

that the combination of financial integration and imperfect fiscal integration in Europe may

induce complex interactions among bond markets, while Lane (2012) observes that Europe

was ill-equipped to dampen financial shocks in a concerted manner due to the absence

of an area-wide buffer mechanism prior to the crisis. On the topic of financial integration,

Acharya, Drechsler, and Schnabl (2014) and Brutti and Sauré (2015) show that the exposure

of financial institutions domiciled in sovereign a to debt issued by sovereign b introduces an

implicit connection between the credit risk of the two sovereigns. If sovereign b defaults and

sovereign a is obliged to bail out its banking sector, then sovereign a absorbs a portion of

the banks’ credit risk, creating an indirect risk spillover from sovereign b to sovereign a.

In normal times, sovereign credit risk spillovers are unlikely to be a cause for concern.

However, spillovers may intensify markedly in times of stress, in line with Ang and Bekaert’s

(2002) observation of increased financial market comovements under adverse conditions. In

their seminal paper, Allen and Gale (2000) define financial contagion as an intensification

of spillovers beyond that which would be expected in light of fundamentals and exposure to

common shocks. Consequently, the development of tools to track spillover activity over time
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has the potential to provide an early warning of contagion risks. Billio, Getmansky, Lo, and

Pelizzon (2012, p. 555) argue that by carefully monitoring the topology of financial networks,

“we stand a better chance of identifying “black swans” when they are still cygnets”. The

utility of such tools for policymakers is readily apparent, as reflected in the remarks of ECB

Vice-President Vı́tor Constâncio (2012) among others.

Network models provide the natural framework to study bilateral interactions among

entities. Such models have risen to prominence in economics and finance in recent years and

network structure is increasingly seen as an important determinant of aggregate outcomes

(e.g. Leitner, 2005; Acemoglu, Carvalho, Ozdaglar, and Tahbaz-Salehi, 2012; Alter and

Schüler, 2012; Billio et al., 2012; Caporin, Pelizzon, Ravazzolo, and Rigobon, 2013; Diebold

and Yilmaz, 2009, 2014; Alter and Beyer, 2014; Greenwood-Nimmo, Nguyen, and Rafferty,

2016). The core of a network model is its adjacency matrix, which characterises the pairwise

relations (edges) among the entities (vertices) in the system. Billio et al. (2012) propose

an approach to the estimation of unweighted directed adjacency matrices based on pairwise

Granger causality test statistics. If the adjacency matrix is denoted A and its (i, j)-th

element aij, then aij = 1 if variable j Granger causes variable i and aij = 0 otherwise.

Applying their technique to a large sample of hedge funds, banks, broker/dealers, and

insurance companies, Billio et al. show that the network is highly dynamic and becomes

much more densely interconnected prior to systemic shocks.

A limitation of Billio et al.’s approach is that the adjacency matrix is unweighted, which

may obscure valuable information about the relative magnitudes of bilateral spillovers. An

alternative framework which addresses this concern has been proposed by Diebold and

Yilmaz (2009; 2014, hereafter collectively DY). The DY technique uses forecast error vari-

ance decompositions from an underlying vector autoregressive (VAR) model to construct

a weighted directed network. In applications to global equity market spillovers and to the

linkages among financial institutions, DY argue that an increase in the proportion of the

aggregate forecast error variance explained by bilateral spillovers is associated with systemic

shocks. Given that it is changes in the strength of spillovers which are likely to be of greatest
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concern to policymakers, we adopt the DY framework as the foundation of our analysis.

Both Billio et al. and DY advocate the use of rolling sample analysis to track changes

in network topography over time. As the number of rolling samples becomes large, such a

framework relies critically on a reductive approach to summarise systemwide spillover activ-

ity in a simple manner which facilitates comparisons across rolling samples. The summary

statistic proposed by DY is the ‘spillover index’, which is proportional to the mean bilateral

spillover. However, many networks have been shown to be scale-free in the sense that their

degree distribution follows an asymptotic power law where the number of vertices to which

a given vertex is connected follows a Pareto distribution (Albert and Barabási, 2002). Con-

sequently, a small subset of vertices will account for a large proportion of the connections

in a typical network, a result which is reflected in many aspects of social science such as

Feld’s (1991) friendship paradox. Several studies have shown that the weighted degree dis-

tribution may also exhibit similar asymmetry (e.g. Tanaka and Aoyagi, 2008). In practice,

we find that this is true of DY networks. Based on simulations from a simple VAR(1) data

generating process, Figure 1 demonstrates the profound asymmetry of the weighted degree

distribution obtained from the DY framework (a detailed summary of the simulation results

is provided in Appendix A). In light of this asymmetry, the mean bilateral spillover is likely

to be biased and to provide a poor summary of spillover activity.

— Insert Figure 1 here —

Our principal contribution is to develop a framework to characterise the spillover density

in its entirety and to monitor its evolution through time in an intuitive manner. Our frame-

work employs kernel density estimation to estimate the density of bilateral spillovers in each

rolling sample. We then propose several techniques that can be applied to the sequence of

estimated spillover densities in order to monitor the network topography over time. Con-

sequently, our paper follows closely in the spirit of Billio et al. (2012) and represents a

useful addition to the toolbox developed by DY. Not only is our approach unbiased in the

presence of an asymmetric spillover density but it conveys stronger and more timely signals
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of changes in spillover activity than mean-based spillover indices such as that proposed by

DY.

We apply our to technique to a large group of European sovereigns over the period

January 2nd 2006 to July 27th 2015. Our results reveal that the spillover density is relatively

stable prior to the subprime crisis in the sense that its location and shape do not change

notably prior to mid 2007. In this period of relative tranquility, the large majority of

bilateral spillovers among sovereigns are very weak but there is a small subset of non-

negligible spillovers, mostly involving recently acceded states. Consequently, the spillover

density is profoundly right skewed in the pre-crisis period and this asymmetry is precisely the

behaviour that challenges the use of the mean as a summary statistic. With the outbreak of

the subprime crisis, the spillover density shifts rightward and the skew weakens. This process

starts in mid-2007 at the time that Bear Stearns ran into difficulties and continues through

the bankruptcy of Lehman Brothers in September 2008. Over this period, the signals

arising from the mean-based DY spillover index and our suite of density-based measures

are similar. However, from late 2008 until mid 2014, the location of the spillover density

is relatively stable and the DY spillover index yields little signal. This contrasts markedly

with the density-based measures, which rapidly and strongly reflect the unfolding debt crisis

in Greece and the ensuing sequence of sovereign bailouts. These events — which were at

the heart of the debt crisis — primarily affect the tails of the spillover density, which leads

us to conclude that there is a need for density-based spillover measures to complement the

established mean-based measures.

This paper proceeds as follows. Section II summarises the DY framework and introduces

our approach to characterising the spillover density. Section III contains our main empirical

results as well as further results from a raft of robustness exercises. Section IV concludes.
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II. Analytical Framework

A. The Approximating Model

We study spillovers of sovereign risk among a group of i = 1, 2, . . . ,m European sovereigns.

To measure changes in the expected default risk associated with debt issued by the i-th

sovereign in period t, we use the first difference of its CDS spread measured in basis points,

denoted xit. Our analysis employs data provided by Markit which relates to US dollar

denominated CDS contracts for unsecured sovereign debt with a tenor of 5 years under

a complete restructuring clause. Our selection of these specific CDS contract parameters

accords with the market conventions documented by Bai and Wei (2012).

For each sovereign, we also include the change in the ten year government bond yield

measured in basis points, yit. In addition to risk premia, long-term bond yields convey

information about macroeconomic fundamentals, including market-based expectations of

the long-term outlook for growth and inflation. For the i-th sovereign, one would expect

the risk component of the long-term bond yield to be closely related to the CDS spread,

which is already included in the model. Consequently, in the absence of direct measures

of macroeconomic fundamentals sampled at daily frequency, the government bond yield

provides a valuable proxy after accounting for sovereign credit risk.

Finally, based on Caporin et al. (2013), we include three additional control variables.

First, et is the first difference of the three-month Euribor, which captures changes in the

cost of short-term interbank loans in the Euro area. Second, st is the Euribor-EONIA

spread. Unlike the Euribor, which is derived from a survey of unsecured term lending

rates, EONIA (the Euro OverNight Index Average) is based on a survey of unsecured

overnight rates. Consequently, EONIA is approximately risk-free and so the Euribor-EONIA

spread provides a measure of interbank credit risk. Finally, rt is the first difference of

the variance risk premium (VRP) for the Euro Stoxx 50, a common measure of investors’

risk appetite. Following the definition proposed by Bollerslev, Tauchen, and Zhou (2009),

the VRP is computed as V RPt = IVt − RVt, where IVt is the one-month-ahead option-
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implied risk-neutral variance (given by the square of the VSTOXX) and RVt is the realised

variance computed as the sum of squared five minute returns. As noted by Longstaff et al.

(2011), such a set of market-determined control variables should summarise a broad array

of economic indicators relevant to investors. The Euribor, EONIA and VSTOXX were

downloaded from Bloomberg and the realised variance from the Oxford Man Institute.

Unit root tests indicate that all series are stationary over our estimation sample (results are

available on request).

Following Billio et al. (2012) and DY, the common practice when studying time-variation

in spillover activity is to employ rolling regression analysis. Suppose that the length of the

full sample is t = 1, 2, . . . , T and that a window length of τ < T is selected (the selection of

τ in discussed below). Given τ , one estimates VAR models on rolling samples of length τ ,

each of which is indexed by r = 1, 2, . . . , R where R = T − τ +1. To fix notation, we define

the m × 1 vectors xt = (x1t, x2t, . . . , xmt)
′ and yt = (y1t, y2t, . . . , ymt)

′ and the n × 1 vector

zt = (et, st, rt)
′. The p(r)-th order reduced form VAR model for (x′

t,y
′
t, z

′
t)

′ estimated on

the r-th rolling sample may be written as:

⎛⎜⎜⎜⎝
xt

yt

zt

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
α

(r)
x

α
(r)
y

α
(r)
z

⎞⎟⎟⎟⎠+

p(r)∑
j=1

⎛⎜⎜⎜⎝
a
(r)
xx,j a

(r)
xy,j a

(r)
xz,j

a
(r)
yx,j a

(r)
yy,j a

(r)
yz,j

a
(r)
zx,j a

(r)
zy,j a

(r)
zz,j

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
xt−j

yt−j

zt−j

⎞⎟⎟⎟⎠+

⎛⎜⎜⎜⎝
u

(r)
x,t

u
(r)
y,t

u
(r)
z,t

⎞⎟⎟⎟⎠ (1)

for t = r, . . . , r + τ − 1. In common with Greenwood-Nimmo et al. (2016), we select the

lag order for the r-th rolling regression, p(r), optimally by minimisation of the Schwarz

Information Criterion. This contrasts with many existing applications of the DY method

which impose the same lag order in every rolling sample. To simplify the notation that

follows, let the total number of variables entering the system be denoted by d = 2m+n and

define gt = (x′
t,y

′
t, z

′
t)

′. Now, we may rewrite (1) compactly as:

gt = α(r) +

p(r)∑
j=1

A
(r)
j gt−j + u

(r)
t (2)
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where the regression residuals u
(r)
t =

(
u

(r)′
x,t ,u

(r)′
y,t ,u

(r)′
z,t

)′
∼ MN

(
0,Ω(r)

)
and where:

α(r) =

⎛⎜⎜⎜⎝
α

(r)
x

α
(r)
y

α
(r)
z

⎞⎟⎟⎟⎠ , A
(r)
j =

⎛⎜⎜⎜⎝
a
(r)
xx,j a

(r)
xy,j a

(r)
xz,j

a
(r)
yx,j a

(r)
yy,j a

(r)
yz,j

a
(r)
zx,j a

(r)
zy,j a

(r)
zz,j

⎞⎟⎟⎟⎠ and Ω(r) =

⎛⎜⎜⎜⎝
ω

(r)
xx ω

(r)
xy ω

(r)
xz

ω
(r)
yx ω

(r)
yy ω

(r)
yz

ω
(r)
zx ω

(r)
zy ω

(r)
zz

⎞⎟⎟⎟⎠
with Ω(r) being positive-definite. Note that we do not make any assumption about the

exogeneity of the variables in yt and/or zt with respect to those in xt.

B. The Diebold–Yilmaz Framework

Suppressing the vector of intercepts for simplicity and because it is not central to the

computation of forecast error variance decompositions, the Wold representation of (2) is:

gt =
∞∑
j=1

B
(r)
j u

(r)
t−j (3)

where B
(r)
j = A

(r)
1 B

(r)
j−1 + A

(r)
2 B

(r)
j−2 + . . . , for j = 1, 2, . . . with B

(r)
0 = Id and B

(r)
j = 0

for j < 0 and where the B
(r)
j ’s are square-summable and causal. Following Pesaran and

Shin (1998), the generalised forecast error variance decomposition (GVD) at horizon h =

0, 1, 2, . . . , H is defined with respect to the parameters of (3) as follows:

ϑ
(r,h)
i←j =

(
σ
(r)
u,jj

)−1 ∑h−1
�=0

(
e′iB

(r)
� Ω(r)ej

)2

∑h−1
�=0 e

′
iB

(r)
� Ω(r)B

(r)′
� ei

(4)

for i, j = 1, . . . , d where σ
(r)
u,jj is the j-th diagonal element of Ω(r) and ei is a d× 1 selection

vector whose i-th element is one and whose remaining elements are zero. Consequently,

ϑ
(r,h)
i←j expresses the proportion of the h-step ahead forecast error variance (FEV) of variable

i which can be attributed to shocks in the equation for variable j in the r-th rolling sample.

DY were the first to show that GVDs can be used to form a weighted directed network.

Abstracting for now from the well-known scaling issue that arises with GVDs when Ω(r) is
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non-diagonal, one may construct the d× d connectedness matrix for gt as follows:

C
(r,h) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

ϑ
(r,h)
1←1 ϑ

(r,h)
1←2 · · · ϑ

(r,h)
1←d

ϑ
(r,h)
2←1 ϑ

(r,h)
2←2 · · · ϑ

(r,h)
2←d

...
...

. . .
...

ϑ
(r,h)
d←1 ϑ

(r,h)
d←2 · · · ϑ

(r,h)
d←d

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(5)

where C
(r,h) has the following block structure which is conformable with gt = (x′

t,y
′
t, z

′
t)

′:

C
(r,h) =

⎛⎜⎜⎜⎝
ϑ

(r,h)
x←x ϑ

(r,h)
x←y ϑ

(r,h)
x←z

ϑ
(r,h)
y←x ϑ

(r,h)
y←y ϑ

(r,h)
y←z

ϑ
(r,h)
z←x ϑ

(r,h)
z←y ϑ

(r,h)
z←z

⎞⎟⎟⎟⎠ (6)

For a given horizon, h, and a given rolling sample, r, ϑ
(r,h)
x←x

(m×m)
characterises risk spillovers among

the European sovereigns while ϑ
(r,h)
x←y

(m×m)

and ϑ
(r,h)
x←z

(m×n)
summarise spillovers from the market-specific

economic conditions and the global control variables (respectively) onto sovereign risk. The

interpretation of the remaining blocks of C(r,h) follows easily in a similar fashion.

The approach proposed by Diebold and Yilmaz (2014) is to normalise the (i, j)-th el-

ement of C
(r,h) by a factor of 1/

∑d
j=1 ϑ

(r,h)
i,j for i, j = 1, 2, . . . , d such that each row of

C
(r,h) sums to unity. However, our interest is solely in risk spillovers among the Euro-

pean sovereigns — we include the control variables, yt and zt, to control for the influ-

ence of market-specific conditions and global common factors but spillovers involving the

control variables are not our primary interest. Therefore, we apply the DY normalisa-

tion to ϑ
(r,h)
x←x directly — that is, we define the normalised (i, j)-th element of ϑ

(r,h)
x←x as

θ
(r,h)
i←j = ϑ

(r,h)
i←j /

∑m
j=1 ϑ

(r,h)
i←j for i, j = 1, 2, . . . ,m. Consequently, we may write the normalised
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m×m block of the h-step ahead connectedness matrix corresponding to spillovers in xt as:

θ(r,h)
x←x =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

θ
(r,h)
1←1 θ

(r,h)
1←2 · · · θ

(r,h)
1←m

θ
(r,h)
2←1 θ

(r,h)
2←2 · · · θ

(r,h)
2←m

...
...

. . .
...

θ
(r,h)
m←1 θ

(r,h)
m←2 · · · θ

(r,h)
m←m

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(7)

where θ
(r,h)
x←x can be thought of as the connectedness matrix for xt conditional on yt and zt.

Controlling for the influence of market-specific economic conditions and global factors in

this way is important if we are to distinguish between true bilateral spillovers of sovereign

risk and comovements induced by exposure to common shocks, for example.

C. Accounting for Compositional Changes

Estimation over rolling samples introduces an attendant complication when working with

sovereign CDS data — unlike the simple case assumed above, the number of sovereigns

in the sample changes through time as the sovereign CDS market broadens considerably

during our sample period. Table 1 records how the number of sovereigns in our sample

changes over our sample, from 02-Jan-2006 to 27-Jul-2015. At the start of our sample, we

have data for 20 sovereigns including most of the major European markets. The significant

markets which are missing at this stage are the UK and Switzerland, which are added to

the sample in March 2006 and January 2009, respectively. In addition, Bulgaria enters the

sample in April 2006. Thus, our largest sample includes 23 sovereigns. Greece is the only

sovereign to exit the sample. As a result of its debt crisis, Greek CDS started trading on a

points upfront basis and the market became highly illiquid.2 Greek CDS data is not readily

available beyond 08-Mar-2012, when the spread is listed as 37,030.49 basis points. We trim

2Points upfront trading is an alternative to operating with a running spread in which the protection

buyer pays the protection seller in an ongoing manner through the life of the contract. Points upfront

trading involves the payment of the present value of the protection contract (or a fraction thereof) at the

start of the trade. This eliminates the risk that the protection seller may be required to pay out before
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the Greek data to 14-Feb-2012, the last observation for which the CDS spread is less than

10,000 basis points. Greece subsequently re-enters our sample on 10-Jun-2013.

— Insert Table 1 here —

In light of these compositional changes, the dimension of the VAR model in the r-th

rolling sample is not simply d but d(r) = 2m(r) + n. This changing dimension does not

pose any problems for estimation of the rolling VAR models nor for computation of the

connectedness matrix following the DY approach within each rolling sample. However, it

does complicate comparisons across rolling samples, as can be easily seen through a simple

thought experiment. Suppose that we have data for 20 sovereigns in the r-th rolling sample

and for 21 sovereigns in the (r + 1)-th rolling sample. For simplicity, suppose also that

spillover activity is perfectly uniform in both rolling samples — hence, every element of

the spillover matrix for the r-th rolling sample is equal to (1/20) × 100% = 5% while the

equivalent figure for the (r+1)-th rolling sample is (1/21)× 100% ≈ 4.75%. In the absence

of an appropriate adjustment, it would therefore appear that the average spillover is weaker

in samples containing more sovereigns.

To ensure that our spillover measures remain comparable across rolling samples, we

multiply every element of θ
(r,h)
y←y by a scale factor such that:

s
(r,h)
i←j =

m(r)

max
r∈{1,...,R}

(m(r))
× θ

(r,h)
i←j (8)

This ensures that spillovers in every rolling sample are expressed on the same scale as in the

sample with the largest cross-section of sovereigns. Returning to our thought experiment,

after applying our adjustment to the r-th rolling sample, we obtain a value of (20/21) ×
(1/20) × 100% ≈ 4.75% and the spillover matrices from the two rolling samples are now

having received an income from the contract.
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measured on the same scale. The final re-scaled sovereign spillover matrix is given by:

S
(r,h)
x←x =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

s
(r,h)
1←1 s

(r,h)
1←2 · · · s

(r,h)

1←m(r)

s
(r,h)
2←1 s

(r,h)
2←2 · · · s

(r,h)

2←m(r)

...
...

. . .
...

s
(r,h)

m(r)←1
s
(r,h)

m(r)←2
· · · s

(r,h)

m(r)←m(r)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (9)

The (i, i)-th diagonal element of S
(r,h)
x←x measures the proportion of the h-step ahead FEV for

the i-th sovereign CDS spread in the r-th rolling sample that can be attributed to shocks to

the CDS spread for sovereign i itself — this is known as the own contribution. Meanwhile,

the (i, j)-th off-diagonal element of S
(r,h)
x←x measures the proportion of the h-step ahead FEV

for the i-th sovereign CDS spread in the r-th rolling sample that can be attributed to shocks

to the CDS spread for sovereign j — that is, the risk spillover from sovereign j to i.

D. Summarising the Bilateral Spillover Density

Given that the number of elements in S
(r,h)
x←x is quadratically increasing in m(r), reductive

methods are needed to summarise spillover activity. DY propose the aggregate spillover

index, S
(r,h)
x←x:

S(r,h)
x←x =

e′
m(r)S

(r,h)
x←xem(r) − trace

(
S
(r,h)
x←x

)
e′
m(r)S

(r,h)
x←xem(r)

× 100% (10)

where, due to the scale factor that we introduce in (8):

e′
m(r)S

(r,h)
x←xem(r) =

m(r)

max
r∈{1,...,R}

(m(r))
×m(r)

Consequently, it follows that the DY spillover index is proportional to the mean bilateral

spillover (i.e. the mean of the off-diagonal elements of S
(r,h)
x←x). To see this, note that:

E

[
s
(r,h)
i←j,j �=i

]
=

e′
m(r)S

(r,h)
x←xem(r) − trace

(
S
(r,h)
x←x

)
m(r)(m(r) − 1)

≡ S
(r,h)
x←x

m(r) − 1
× m(r)

max
r∈{1,...,R}

(m(r))
(11)
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While the mean provides an elementary summary of spillover activity, it only conveys infor-

mation about the location of the spillover density and not its shape. Furthermore, reliance

on the mean may be inappropriate when the spillover density is asymmetric (recall Figure

1). Consequently, measures designed to summarise spillover activity should take account of

both the location and the shape of the spillover density.

We proceed by estimating the probability density function of the set of bilateral spillovers{
s
(r,h)
i←j

}m

i,j=1,i �=j
via kernel density estimation (KDE). To this end, we define an η× 1 vector

of grids, ν = (ν1, ν2, . . . , νη)
′. We follow the established practice and set η = 1, 024. We

then estimate the spillover density as:

ĝ(r,h)(νl) =
1

b(r,h)

(
1

m(r)(m(r) − 1)

) m(r)∑
i,j=1;i �=j

K

(
νl − s

(r,h)
i←j

b(r,h)

)
, l = 1, 2, . . . , η (12)

where K is a kernel and b(r,h) denotes the bandwidth. To ensure that ĝ(r,h)(νl) integrates to

unity over the selected range of grid points, we employ the following common normalisation:

f̂ (r,h)(νl) =
ĝ(r,h)(νl)

RSUM(ĝ(r,h))
(13)

where RSUM
(
ĝ(r,h)

)
denotes a numerical Riemann sum of ĝ(r,h) =

(
ĝ(r,h)(ν1), . . . , ĝ

(r,h)(νη)
)′
.

Given that a variety of kernels are in widespread use in economics and finance, we study how

the choice of kernel affects the analysis. We consider four popular kernels: (i) the Gaussian

kernel with Silverman’s (1986) rule-of-thumb bandwidth; (ii) the Gaussian kernel with the

asymptotically optimal bandwidth; (iii) the Epanechnikov kernel with the asymptotically

optimal bandwidth; and (iv) the adaptive kernel density estimator of Botev, Grotowski, and

Kroese (2010, BGK).

Proceeding in this way, for a chosen kernel and a given window length (τ) and forecast

horizon (h) we construct a sequence of r = 1, 2, . . . , R spillover densities, one for each

rolling sample. The next step is to evaluate the evolution of the spillover density over

rolling samples. If one wishes to focus on a small subset of the estimated densities, then it
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is feasible to directly compare them against one-another or against a suitable benchmark

density. This may be a desirable approach if one intends to study specific events. In many

cases, however, one may desire a higher frequency characterisation of the evolution of the

spillover density which naturally requires a more reductive approach to analysis. A simple

solution is to compute a desired set of percentiles or moments for the R densities, each

of which may then be treated as a synthetic time series with R observations. A more

sophisticated solution is to compare each of the R estimated densities against a desired

benchmark density, f0, using one or more divergence criteria. We consider the following

divergence criteria:

DHN

(
f̂ (r,h), f0

)
= supν

∣∣∣f̂ (r,h) (ν)− f0 (ν)
∣∣∣/supνf0 (ν) (14)

DKL

(
f̂ (r,h), f0

)
=

∫
f̂ (r,h) (ν) ln

{
f̂ (r,h) (ν)

/
f0 (ν)

}
dν (15)

where f̂ (r,h) is the estimated density under evaluation. DHN is the Hilbert norm and DKL is

the Kullback Leibler Information Criterion (KLIC). Both measures are strictly non-negative

and take the value zero only if f̂ (r,h) = f0.
3

The choice of benchmark density is an important one. In principle, one may define a

theoretical benchmark spillover density. This is an intriguing possibility but it is beyond

our scope in this paper — we adopt a simpler approach. Given that we are particularly

interested in tracing the evolution of the spillover density through time, our suggestion is

to treat the estimated density from the first rolling sample as the benchmark — that is

to set f0 = f̂ (1,h). Our first rolling sample spans a period of relative tranquility in the

financial markets (02-Jan-2006 to 15-Dec-2006) and so the resulting spillover density can be

considered typical for ‘normal’ times. This proposition is validated in our empirical analysis,

where we find that the estimated spillover densities in all rolling samples ending prior to

the outbreak of the subprime crisis in mid 2007 are qualitatively and quantitatively similar.

3Results for a variety of alternative divergence criteria are available on request.
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III. Results

Our first task is to choose an appropriate window length (τ) and forecast horizon (h).

While there is no simple method to select either value optimally, the existing literature

provides a useful guide. Applications of the DY method to daily data have used a range

of values. Diebold and Yilmaz (2014) obtain their main results using τ = 100 and h = 12

days, Baruńık, Kočenda, and Vácha (2016) use τ = 200 and h = 10 days and Greenwood-

Nimmo et al. (2016) use τ = 250 and h = 10 days. Given this uncertainty, the emergent

norm in the literature is to evaluate the sensitivity of the connectedness measures to several

candidate window lengths and forecast horizons. Adopting this approach, we experiment

with τ ∈ {200, 250, 300} trading days and h ∈ {5, 10, 15} trading days.4 Table 2(a) reports

the common sample correlation coefficients between the DY spillover indices computed under

all pairwise combinations of τ and h over these ranges.

— Insert Table 2 here —

The correlations reported in Table 2(a) are remarkably high, indicating that the results

are not driven either by the choice of window length or horizon. In fact, for any given

window length, the correlation across different values of the forecast horizon is perfect to

three decimal places, which indicates that the GVDs have largely converged to their long-

run values within 5 days. This reflects the low degree of serial correlation in our data and

is a common finding in the existing literature (e.g. Greenwood-Nimmo et al., 2016). We

therefore set τ = 250 and h = 10 without loss of generality.

A. Elementary Spillover Measures

Figure 2 plots the DY spillover index, S
(r,10)
x←x . The figure reveals a gradual increase in

aggregate spillover activity until late 2009, with spillovers accounting for little more than

20% of the 10-days-ahead FEV in the system in late 2006 but reaching more than 80% by

4Given the dimension of our VAR model, we consider it imprudent to set τ < 200 trading days.
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the time of Lehman Brothers’ bankruptcy filing. This increase in spillover activity reflects

an intensification of the bilateral interactions among sovereigns rather than the influence of

common factors, for which our model explicitly controls following Caporin et al. (2013). A

particularly striking feature of the figure is the relative stability of the spillover index from

late 2008 to mid 2014 despite several sovereign crises and bailouts at this time. We shall

return to this observation shortly.

— Insert Figure 2 here —

An obvious question is how the increase in aggregate spillover activity between the start

of our sample (the pre-crisis period) and the height of the debt crisis is distributed over the

edges in the network. Consider two rolling samples: (i) the first rolling sample from 02-Jan-

2006 to 15-Dec-2006, which assumes a particular importance in our analysis as it will be

used as a benchmark for subsequent comparisons; and (ii) the rolling sample covering the

period 22-Apr-2010 to 06-Apr-2011, the end of which corresponds to the Portuguese request

for activation of the aid mechanism in the midst of the sovereign debt crisis.5 Figures 3 and

4 report the connectedness matrices for these two rolling samples as heatmaps. To facilitate

their interpretation, each heatmap has been clustered using an agglomerative single linkage

algorithm.6 Consequently, the order of the sovereigns differs between Figures 3 and 4.

Furthermore, due to changes in the cross-sectional composition of our sample over time,

20 sovereigns are included in Figure 3 and 23 in Figure 4, although the estimated spillover

effects in both figures are directly comparable by virtue of the scale factor defined in (8).

— Insert Figures 3 and 4 here —

5Our choice of the Portuguese bailout sample as a comparison case is essentially arbitrary — we could

use any rolling sample during the sovereign debt crisis period and the principal implications that we highlight

below would still hold. Detailed results for other samples are available on request.

6This is an iterative ‘bottom-up’ algorithm. To start, every vertex is considered as a cluster in its own

right. In each iteration, the pair of clusters which are closest to one-another are merged into a new cluster.

The closeness of two clusters is measured by the single strongest connection which exists between members

of those clusters. The algorithm terminates when all vertices are included in a single cluster.
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Consulting Figure 3, we find that the large majority of bilateral spillovers are very

weak in the pre-crisis period. In fact, with the exception of the pairwise spillovers between

Poland and Hungary and between the Netherlands and Austria, the remaining spillovers

are mostly negligible. The clustering algorithm draws attention to three groups which

can be seen as blocks along the prime diagonal of the connectedness matrix — there is a

cluster of Eastern European sovereigns (the Czech Republic, Latvia, Russia, Hungary and

Poland), a separate cluster of Northern European and Scandinavian sovereigns (Norway,

Sweden, Ireland, Finland, Austria, the Netherlands and Denmark) and a group of Southern

European sovereigns (Spain, Italy, Greece and Portugal).

Such spatial clustering is indicative of regional effects on sovereign credit spreads. The

Northern and Southern European clusters in Figure 3 align closely with popular notions of

the European core and periphery. Hale and Obstfeld (2016) summarise the core–periphery

distinction in the years preceding the sovereign debt crisis. They argue that a pattern of

heavy borrowing, domestic lending booms and rapid asset price inflation became typical of

the peripheral economies at this time, fueled by the low borrowing costs associated with

EMU membership. Much of this borrowing was intermediated by financial institutions

from the core economies, creating a financial boom in the core at the cost of elevated

systemic exposure to peripheral risk. Meanwhile, the common behaviour of the Eastern

European sovereigns may be attributed to two phenomena. First, with the exception of

Russia, this group acceded to the EU in 2004 and their efforts to integrate with the EU will

have strongly affected their bond yields.7 Second, the deep financial, economic and political

linkages among Russia and the Commonwealth of Independent States (CIS) naturally creates

a degree of comovement within this group, with Russia playing a leading role (Espinosa-

Bowen, Ilahi, and Alturki, 2009).

Figure 4 presents a stark contrast relative to Figure 3. Overall, spillover activity has

intensified markedly, although increases are not uniformly distributed over the edges in the

7Reininger and Walko (2006) note that Polish and Hungarian bond yields were slow to integrate with

the EU, which may partially explain the strong bilateral linkage between these sovereigns in Figure 3.
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network. At one extreme, Switzerland stands out for being very weakly connected to the rest

of the system. At the other extreme, the European core and peripheral blocks — while still

visibly distinct — are now much more strongly connected. The increase in core–periphery

spillovers reflects the transmission of credit risk via the network of financial intermediation

noted above and documented by Hale and Obstfeld (2016). In addition to core–periphery

linkages, the figure reveals strong linkages among peripheral states, especially among Ireland,

Portugal and Spain and, to a lesser degree, Italy. Such intra-periphery spillovers were a key

concern among many policymakers at the time, as credit risk spillovers among troubled

states raise the spectre of sovereign contagion (Alter and Schüler, 2012; Constâncio, 2012;

Kalbaska and Gatkowski, 2012). Finally, the Eastern European cluster identified in Figure

3 is still readily apparent and is now joined by a new entrant into the sample, Bulgaria.

B. Density-Based Spillover Measures

Figure 5 plots the estimated spillover density in the first rolling sample, 02-Jan-2006 to

15-Dec-2006. To demonstrate the effect of kernel selection on the estimated density, we

present results based on the following four implementations of the KDE: (i) the Gaussian

kernel using Silverman’s (1986) rule-of-thumb bandwidth; (ii) the Gaussian kernel using the

asymptotically optimal bandwidth; (iii) the Epanechnikov kernel using the asymptotically

optimal bandwidth; and (iv) the BGK adaptive KDE using the data-driven bandwidth.

— Insert Figure 5 here —

Recall that the off-diagonal elements of the connectedness matrix are FEV shares mea-

sured in percent. Therefore, the horizontal axis in Figure 5 measures the strength of bilateral

spillover effects in percent. Regardless of which kernel is considered, the estimated density

closely fits the spillover histogram. The large majority of the probability mass lies close

to zero, reflecting our earlier observation based on Figure 3 that most bilateral spillovers

are negligible in normal times. The density exhibits a marked skew, with a long right tail

corresponding to the subset of strong spillovers noted above.
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Figure 6 plots kernel densities for the rolling sample ending with the Portuguese bailout

on 06-Apr-2011. Unlike Figure 5, some differences in the behaviour of the four KDEs are now

apparent. The Gaussian kernel using Silverman’s rule-of-thumb bandwidth over-estimates

the mass in both tails quite considerably. When the asymptotically optimal bandwidth is

used, both the Gaussian and Epanechnikov kernels perform relatively well. Interestingly, the

gain from the variable bandwidth under the BGK adaptive KDE is negligible. Consequently,

in deference to the principle of parsimony, we adopt the simple Gaussian kernel with the

optimal bandwidth as our benchmark KDE without loss of generality.

— Insert Figure 6 here —

As of April 2011, the spillover density has moved markedly to the right, with the bulk

of the probability mass between 1% and 5% and a well-defined peak a little above 2%.

Approximately one-third of the probability mass lies beyond 5%, which corresponds to the

strong bilateral interactions within the clusters identified above. Due to these changes in

the spillover density during the crisis, we no longer observe such a pronounced right skew,

indicating that spillovers that would be considered extremely strong in normal times occur

with a relatively high probability in times of crisis. When viewed in this way, it follows

that increasing systemic stress will typically be reflected not just in an increase in the mean

spillover but also in a reduction in the right skew of the spillover density.

To provide a richer indication of how the spillover density evolves over our sample,

Figure 7 plots the spillover CDFs and PDFs for the following events: the benchmark sample;

Bernanke’s warning of subprime risks in March 2007; the acquisition of Bear Stearns by JP

Morgan in March 2008; the bankruptcy of Lehman Brothers in September 2008; the first

Greek bailout as well as the Irish, Portuguese and Spanish bailouts which occurred between

April 2010 and June 2012; and Greece’s failure to uphold its payment schedule to the IMF

on 30-Jun-2015. At the start of our sample, the bulk of the probability mass is close to

zero — more than three quarters of all bilateral spillovers account for no more than 1% of

FEV and almost nine out of ten account for no more than 2% of FEV. The overall picture
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is very similar in March 2007, when Bernanke (2007) warned of systemic risks related to

government-sponsored mortgage enterprises, less than a week before the delisting of New

Century Financial, one of the largest subprime lenders in the US.

— Insert Figure 7 here —

An intensification of sovereign credit risk spillovers is readily apparent at the time of JP

Morgan’s acquisition of Bear Stearns in March 2008. Six months later, at the time of the

failure of Lehman Brothers, just 4 out of 10 bilateral spillovers account for less than 1%

of FEV while almost the same proportion account for 2.5% of FEV or more and 1 in 10

bilateral spillovers account for 8% of FEV or more. This strong response of the sovereign

credit risk network to the financial crisis is natural in light of the existing literature, which

has demonstrated the nexus between financial crises and debt crises and which has shown

that Europe was particularly vulnerable to financial shocks due to its institutional design

(e.g. Reinhart and Rogoff, 2011; Lane, 2012; Acharya et al., 2014).

Spillovers intensify even further by the time of the first Greek bailout. Just one in six

bilateral spillovers is weaker than 1% of FEV at this time, while nearly half of all bilateral

spillovers exceed 3% of FEV. To understand the extent to which the spillover density has

changed, compare this value to its equivalent in the pre-crisis benchmark sample, where only

one in fifteen bilateral spillovers exceeds 3%. In this strongly interconnected environment,

an idiosyncratic shock affecting risk in one sovereign is likely to rapidly propagate to others.

This fragile regime is sustained throughout several subsequent sovereign bailouts before the

spillover density shifts back to the left toward the end of our sample. However, note that

the right tail of the spillover density is very heavy at this time, indicating that there is

still a substantial concentration of strong spillovers. In practice, these strong spillovers are

predominantly bilateral interactions among the GIIPS, which appear to largely decouple

from the other sovereigns at this time — it is to this issue that we now turn.

22



C. Locating Bilateral Spillovers within the Spillover Density

Figure 8 records the strength of bilateral credit risk spillovers among the GIIPS at key

times in our sample. The figure covers all of the events addressed in Figure 7 as well as two

additional events for Greece — the agreement over the second Greek bailout on 21-Feb-2012

and the Greek debt-swap agreement on 09-Mar-2012. To place the bilateral spillovers in

context, we summarise the spillover density corresponding to each event date as a boxplot.

— Insert Figure 8 here —

In the majority of cases, credit risk spillovers among the GIIPS lie in the upper quartile

of the spillover density. The strong bilateral transfers of credit risk among the GIIPS suggest

that concerns over contagion within this group are well-founded (Constâncio, 2012). The

various GIIPS bailouts were motivated in large part by the desire to prevent contagion. It

is reasonable to assume that a sustained reduction in outward credit risk spillovers from

sovereign i corresponds to a reduction in the contagion risk associated with that sovereign.

Figure 8 reveals that some bailouts achieved a sustained reduction in spillover activity. For

example, the Portuguese bailout (labelled ‘PT’ in the figure) occurs when outward spillovers

from Portugal are very strong, lying well inside the upper 10% of the spillover density. By

the time of the second Greek bailout (labelled ‘GR2’), outward spillovers from Portugal

are weaker in absolute terms and typically lie more centrally within the spillover density,

indicating that the systemic risk posed by Portugal has weakened considerably over this

time. Similarly, the first Greek bailout appears to have reduced outward spillovers from

Greece and the Irish bailout appears to have reduced spillovers from Ireland to Greece,

if not significantly to the other GIIPS states. No such inferences can be drawn for the

Spanish bailout based on Figure 8 as the gap between the events ‘ES’ (the Spanish bailout

of June 2012) and ‘GRD’ (the Greek default on its IMF loan payments in June 2015) is too

large. Nonetheless, taken as a whole, our results suggest that sovereign bailouts succeed in

reducing outward credit risk spillovers from troubled sovereigns (see also Alter and Beyer,

2014).
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The last event that we consider (labelled ‘GRD’) refers to Greece’s failure to meet its

IMF loan repayment obligations. This also coincides with the build up to the Greek bailout

referendum of 05-Jul-2015, a time of considerable concern over a possible Greek departure

from the Eurozone. Figure 8 reveals an unprecedented surge in spillover activity among the

GIIPS at this time, which corresponds to the heavy right tail in Figure 7(d). At this time, the

risk of political contagion (i.e. the risk of other peripheral states using the Greek precedent

in an effort to renegotiate bailout terms subject to the threat that they may otherwise leave

the Eurozone) added to the risk of financial contagion, leading to a decoupling of the GIIPS

from the other European sovereigns. Similar political risks may feature prominently in the

near future in the wake of the Brexit referendum.

D. Rolling Density-Based Spillover Measures

As emphasised by Billio et al. (2012) and DY, if network models are to be useful for monitor-

ing risk, they must be capable of delivering timely signals. Consequently, as a final exercise,

we turn our attention to rolling sample analysis of the spillover density. As a precursor, we

first verify that our rolling density-based results do not depend critically on the choice of

window length or forecast horizon. Table 2(b) reports the balanced sample correlations of

the KLIC as we vary h ∈ {5, 10, 15} and τ ∈ {200, 250, 300}. The results reveal somewhat

more sensitivity to the choice of forecast horizon than was observed in Table 2(a) using the

DY spillover index, although the correlation is never lower than 0.69. Meanwhile, Table 3

compares the performance of the four implementations of the KDE that we consider. The

high correlations observed throughout the table indicate that our results are remarkably

robust to the choice of KDE. Overall, there is little evidence that the results are sensitive

to our modelling choices.

— Insert Table 3 here —

Figure 9 provides a pair of contour plots tracking the spillover histogram and the esti-

mated spillover density over our sample period. The similarity of the two plots indicates
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that our KDE approach provides an accurate summary of spillover activity in the system

in each rolling sample. The contour plots paint a similar picture as the snapshots in Figure

7, drawing particular attention to the right skew which typically characterises the spillover

density. Because of this skew, the mean is typically higher than the median, with the

difference between the two reaching approximately 1.5% late in the sample as the GIIPS

decouple from the other sovereigns. The stronger the right skew, the more the DY spillover

index over-estimates the central tendency of the spillover density. Given that this distortion

may often materially affect the interpretation of the results, we recommend that the DY

spillover index should be complemented with additional information on the shape of the

spillover density. Ideally this can be achieved by presenting the entire spillover density, as

in Figure 9. Alternatively, one may pursue a more reductive approach based on a spillover

asymmetry measure (SAM). As an illustration, we provide a simple SAM in Figure 9 de-

fined as the difference between the mean and the median, although alternative formulations

abound.8

— Insert Figure 9 here —

Figure 10 presents a more formal analysis of the dynamic evolution of the spillover

density based on the divergence criteria in equations (14) and (15). In each case, we use

the first rolling sample to define the benchmark density, f0. The implicit assumption is that

the spillover density at this time is representative of the normal situation in the pre-crisis

period. This is supported by the similarity of the spillover densities in the early part of our

sample that can be seen in Figure 9. The very low values of both the Hilbert Norm and the

KLIC for rolling samples ending in the first half of 2007 suggest that the spillover density

for the first sample is indeed representative of the spillover density over this entire period.

— Insert Figure 10 here —

8Note that, despite the similar terminology, our spillover asymmetry measure differs from that of Baruńık

et al. (2016), which is based on a signed decomposition of the variables entering the approximating model.
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Both divergence criteria exhibit considerably greater variation than the DY spillover

index over the period from late 2008 to mid 2014. Several major events are identified

in the figure, including bank failures, sovereign crises, sovereign bailouts and ECB policy

interventions. The divergence criteria respond rapidly and strongly to these events. This is

also true of the DY index until the failure of Lehman Brothers, after which its response is

generally muted. This highlights a distinction between the events of the financial crisis of

2007-8 and the sovereign debt crisis starting in late 2009. Events during the financial crisis

are associated with changes in the location of the spillover density — this can be seen clearly

in Figure 9 where adverse news relating to Bear Stearns and Lehman Brothers results in

step changes in the strength of the mean bilateral spillover. By contrast, the major events

of the debt crisis predominantly affect the tails of the spillover density, which explains why

the divergence criteria outperform the DY spillover index at this time. This is particularly

true of events ‘F’ and ‘G’ in Figure 10 which relate to the emergence of the Greek debt

crisis and events ‘H’ to ‘M’, which relate to bailouts for the GIIPS and Cyprus. In each

case, the response of the DY spillover index is mild or negligible but the divergence criteria

react strongly.

Our finding that sovereign crises and bailouts mainly affect the tails of the spillover den-

sity has an intuitive appeal. These are extreme events which either exacerbate or ameliorate

credit risk spillovers and which are likely to have a particularly strong affect on spillovers

among the more troubled sovereigns in our sample. In the context of the European debt cri-

sis, it is spillovers among this group that are of primary concern. Indeed, whenever network

models are used to model risk transmission, it will typically be the case that the strongest

risk spillovers are of the greatest interest. Consequently, measures such as ours which convey

information about the shape of the spillover density represent a valuable complement to the

mean-based measures which are widely used in the literature at present.
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IV. Concluding Remarks

In this paper, we develop an empirical network model to study the evolution of sovereign

credit risk spillovers during the European debt crisis. Our approach traces the evolution

of the entire spillover density as opposed to focusing solely on its central tendency. This

is an important innovation because we demonstrate that the spillover density is typically

asymmetric, which confounds efforts to track changes in spillover intensity using established

measures which are proportional to the mean bilateral spillover.

Our results reveal that the spillover density is relatively stable prior to the subprime crisis

in the sense that its shape does not change notably prior to mid 2007. In this pre-crisis

period of relative tranquility, the spillover density is profoundly skewed, with a small subset

of strong spillovers standing out among the large majority which are very weak. During the

global financial crisis of 2007-8, the spillover density shifts rightward and the skew weakens.

Over this period, the signals arising from the mean-based DY spillover index and our suite

of density-based measures are similar. By contrast, during the sovereign debt crisis, it is

the tails of the spillover density which contain the most information. Consequently, our

density-based measures provide much clearer and more timely signals than the DY spillover

index at this time. Given that it is the strongest spillovers that populate the right tail of the

spillover density which elicit the greatest concern from policymakers, density-based spillover

measures represent a valuable complement to the established mean-based measures.
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Silverman Gaussian Epanechnikov BGK

Silverman 1.000 0.963 0.957 0.950
Gaussian 1.000 0.997 0.923
Epanechnikov 1.000 0.912
BGK 1.000

(a) Uniform Norm

Silverman Gaussian Epanechnikov BGK

Silverman 1.000 0.997 0.997 0.991
Gaussian 1.000 1.000 0.994
Epanechnikov 1.000 0.994
BGK 1.000

(b) Hilbert Norm

Silverman Gaussian Epanechnikov BGK

Silverman 1.000 0.992 0.992 0.973
Gaussian 1.000 1.000 0.979
Epanechnikov 1.000 0.979
BGK 1.000

(c) KL Divergence Criterion

Note: The table reports the correlation between the Uniform Norm, Hilbert Norm and Kullback

Leibler divergence criterion over our rolling samples using four different kernels: the Gaussian kernel

with Silverman’s rule of thumb bandwidth (Silverman); the Gaussian kernel with the asymptotically

optimal bandwidth (Gaussian); the Epanechnikov kernel with the asymptotically optimal bandwidth

(Epanechnikov); and the BGK kernel with a data-driven bandwidth (BGK). In all cases, the window

length is τ = 250 trading days and the forecast horizon is h = 10 trading days.

Table 3: Sensitivity to the Choice of Kernel
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Note: The spillover index, S
(r,h)
y←y , is computed according to equation (10) using a rolling window of τ = 250

trading days and a forecast horizon of h = 10 trading days. The unit of measurement is percent. The dates

shown on the horizontal axis correspond to the end of each rolling sample.

Figure 2: Evolution of the 10-days-ahead Spillover Index
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Note: The heat map summarises the ten-days-ahead spillover matrix for the first rolling sample, 02-Jan-2006

to 15-Dec-2006. Own-variable effects on the prime diagonal have been suppressed and the heatmap has been

clustered according to a single linkage algorithm for clarity of presentation. To account for compositional

changes between rolling samples, each element is adjusted by a scale factor of 20/23 according to the

procedure described in Section II. The unit of measurement is percent.

Figure 3: Connectedness Heat Map for the First Rolling Sample (Benchmark Case)
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Note: The heat map summarises the ten-days-ahead spillover matrix for the sample spanning 22-Apr-2010

to 06-Apr-2011, the end point of which coincides with the Portuguese request for financial assistance. Own-

variable effects on the prime diagonal have been suppressed and the heatmap has been clustered according

to a single linkage algorithm for clarity of presentation. This sample contains all 23 sovereigns, so the scale

factor described in Section II is equal to unity in this case. The unit of measurement is percent.

Figure 4: Connectedness Matrix after the Portuguese Request for Aid (06-Apr-2011)
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Note: The density plots are computed using the bilateral spillovers (i.e. the off-diagonal elements)

of the ten-days-ahead spillover matrix for the first rolling sample, 02-Jan-2006 to 15-Dec-2006.

The spillover density is estimated using four different implementations of the KDE: (i) the Gaus-

sian kernel using Silverman’s (1986) rule-of-thumb bandwidth; (ii) the Gaussian kernel using the

asymptotically optimal bandwidth; (iii) the Epanechnikov kernel using the asymptotically opti-

mal bandwidth; and (iv) the BGK adaptive approach using the data-driven bandwidth. The unit

of measurement on the horizontal axis is percent.

Figure 5: Spillover Densities for the First Rolling Sample (Benchmark Case)
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Note: The density plots are computed using the bilateral spillovers (i.e. the off-diagonal elements)

of the ten-days-ahead spillover matrix for the sample spanning 22-Apr-2010 to 06-Apr-2011. The

end point of this sample corresponds to Portugal’s request for financial assistance. As in Figure

5, the spillover density is estimated using four different implementations of the KDE. The unit

of measurement on the horizontal axis is percent.

Figure 6: Spillover Densities after the Portuguese Request for Aid (6-Apr-2011)
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(a) Contour plot of the spillover histograms over rolling samples

(b) Contour plot of the spillover densities over rolling samples

Note: Panels (a) and (b) present contour plots which trace the mean, the median, the spillover

asymmetry measure (SAM) and selected percentiles of the spillover histogram and spillover den-

sity (respectively) over rolling samples. In each rolling sample, the spillover density is computed

using the Gaussian kernel with the asymptotically optimal bandwidth. The window length is set

at τ = 250 trading days and the forecast horizon at h = 10 trading days. The unit of measure-

ment on the vertical axis is percent. The dates shown on the horizontal axis correspond to the

end of each rolling sample.

Figure 9: Comparison of the Spillover Density and the Spillover Histogram
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Appendix A: Additional Simulation Results

Mean Variance Skewness Kurtosis

Uncorrelated shocks
Lower Decile 0.157 0.042 2.484 11.128
Median 0.165 0.047 2.751 13.820
Upper Decile 0.175 0.053 3.131 18.755

Weakly correlated shocks
Lower Decile 0.443 0.189 1.825 7.248
Median 0.472 0.221 2.063 9.048
Upper Decile 0.508 0.264 2.402 12.385

Strongly correlated shocks
Lower Decile 1.068 1.277 1.555 5.526
Median 1.188 1.522 1.867 7.218
Upper Decile 1.347 1.797 2.141 9.180

Note: All simulations are based on the VAR(1) process Ayt = Byt−1 + et where et ∼ IIN
(
0,Σ

)
assuming a cross-

sectional dimension of N = 50. To obtain uncorrelated shocks, we set A = IN and Σ = IN and draw B ∼ MN(0,ΩB)

where ΩB = B̃B̃′ and the (i, j)th element of B̃ is drawn as ωB̃,ij ∼ U(−1/2N, 1/2N) for i, j ∈ {1, 2, . . . , N}. To obtain

correlated shocks, we retain the same assumptions except that we now set the i-th diagonal element of A to aii = 1

∀i while we draw the aij ’s from the multivariate normal distribution with mean 0 and covariance matrix ΩA = ÃÃ′

where the (i, j)th element of Ã is drawn as ωÃ,ij ∼ U(−c, c). For weakly correlated shocks we set c = 1/2N while for

strongly correlated shocks c = 1/N . In each case, we generate 10,000 draws of A and B and verify that the resulting

VAR model is stationary and ergodic. We then apply the Diebold-Yilmaz technique within each draw to estimate the

set of N(N − 1) bilateral spillovers between variables. For each draw, we compute the sample mean, variance, skewness

and kurtosis of the set of bilateral spillovers. The table reports selected percentiles of the empirical distributions of these

four central moments obtained over the 10,000 draws.

Table A1: Evaluating the Shape of the Spillover Density by Simulation
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